Separation of Uncorrelated Stationary time series using Autocovariance Matrices
Abstract
In blind source separation, one assumes that the observed p time series are linear combinations of p latent uncorrelated weakly stationary time series. To estimate the unmixing matrix, which transforms the observed time series back to uncorrelated latent time series, second‐order blind identification (SOBI) uses joint diagonalization of the covariance matrix and autocovariance matrices with several lags. In this article, we find the limiting distribution of the well‐known symmetric SOBI estimator under general conditions and compare its asymptotical efficiencies to those of the recently introduced deflation‐based SOBI estimator. The theory is illustrated by some finite‐sample simulation studies.
Citing Literature
Number of times cited according to CrossRef: 18
- Mahdi Khosravy, Neeraj Gupta, Nilesh Patel, Nilanjan Dey, Naoko Nitta, Noboru Babaguchi, Probabilistic Stone’s Blind Source Separation with application to channel estimation and multi-node identification in MIMO IoT green communication and multimedia systems, Computer Communications, 10.1016/j.comcom.2020.04.042, (2020).
- Arvind Prasadan, Raj Rao Nadakuditi, Time Series Source Separation Using Dynamic Mode Decomposition, SIAM Journal on Applied Dynamical Systems, 10.1137/19M1273256, 19, 2, (1160-1199), (2020).
- Birhan Ambachew Taye, Alemayehu Amsalu Alene, Ashenafi Kalayu Nega, Bantie Getnet Yirsaw, Time series analysis of cow milk production at Andassa dairy farm, West Gojam Zone, Amhara Region, Ethiopia, Modeling Earth Systems and Environment, 10.1007/s40808-020-00946-z, (2020).
- Klaus Nordhausen, Gregor Fischer, Peter Filzmoser, Blind Source Separation for Compositional Time Series, Mathematical Geosciences, 10.1007/s11004-020-09869-y, (2020).
- François Bachoc, Marc G Genton, Klaus Nordhausen, Anne Ruiz-Gazen, Joni Virta, Spatial blind source separation, Biometrika, 10.1093/biomet/asz079, (2020).
- Jari Miettinen, Markus Matilainen, Klaus Nordhausen, Sara Taskinen, Extracting Conditionally Heteroskedastic Components using Independent Component Analysis, Journal of Time Series Analysis, 10.1111/jtsa.12505, 41, 2, (293-311), (2019).
- Arvind Prasadan, Asad Lodhia, Raj Rao Nadakuditi, undefined, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 10.1109/CAMSAP45676.2019.9022604, (396-400), (2019).
- M. Matilainen, C. Croux, K. Nordhausen, H. Oja, Sliced average variance estimation for multivariate time series, Statistics, 10.1080/02331888.2019.1605515, (1-26), (2019).
- Markus Matilainen, Klaus Nordhausen, Joni Virta, On the Number of Signals in Multivariate Time Series, Latent Variable Analysis and Signal Separation, 10.1007/978-3-319-93764-9_24, (248-258), (2018).
- Klaus Nordhausen, Hannu Oja, Independent component analysis: A statistical perspective, Wiley Interdisciplinary Reviews: Computational Statistics, 10.1002/wics.1440, 10, 5, (2018).
- Klaus Nordhausen, Joni Virta, undefined, 2018 IEEE Statistical Signal Processing Workshop (SSP), 10.1109/SSP.2018.8450695, (428-432), (2018).
- Jari Miettinen, Sergiy A. Vorobyov, Esa Ollila, undefined, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 10.1109/ICASSP.2018.8461460, (4164-4168), (2018).
- Niko Lietzén, Klaus Nordhausen, Pauliina Ilmonen, Complex Valued Robust Multidimensional SOBI, Latent Variable Analysis and Signal Separation, 10.1007/978-3-319-53547-0_13, (131-140), (2017).
- M. Matilainen, C. Croux, K. Nordhausen, H. Oja, Supervised dimension reduction for multivariate time series, Econometrics and Statistics, 10.1016/j.ecosta.2017.04.002, 4, (57-69), (2017).
- Joni Virta, Klaus Nordhausen, Blind source separation of tensor-valued time series, Signal Processing, 10.1016/j.sigpro.2017.06.008, 141, (204-216), (2017).
- Sara Taskinen, Jari Miettinen, Klaus Nordhausen, A more efficient second order blind identification method for separation of uncorrelated stationary time series, Statistics & Probability Letters, 10.1016/j.spl.2016.04.007, 116, (21-26), (2016).
- Pauliina Ilmonen, Klaus Nordhausen, Hannu Oja, Fabian Theis, An Affine Equivariant Robust Second-Order BSS Method, Latent Variable Analysis and Signal Separation, 10.1007/978-3-319-22482-4_38, (328-335), (2015).
- Katrin Illner, Jari Miettinen, Christiane Fuchs, Sara Taskinen, Klaus Nordhausen, Hannu Oja, Fabian J. Theis, Model selection using limiting distributions of second-order blind source separation algorithms, Signal Processing, 10.1016/j.sigpro.2015.01.017, 113, (95-103), (2015).




