Volume 25, Issue 2
Article

Cramér‐von Mises tests of fit for the Poisson distribution

John J. Spinelli

Health Research Centre St. Paul's Hospital Vancouver, British Columbia Canada V6Z 1Y6

Department of Mathematics and Statistics Simon Fraser University Burnaby, British Columbia Canada V5A 1S6

Search for more papers by this author
Michael A. Stephens

Health Research Centre St. Paul's Hospital Vancouver, British Columbia Canada V6Z 1Y6

Department of Mathematics and Statistics Simon Fraser University Burnaby, British Columbia Canada V5A 1S6

Search for more papers by this author
First published: 18 December 2008
Citations: 40

This work was supported in part by the Natural Science and Engineering Research Council of Canada.

Abstract

en

Goodness‐of‐fit tests based on the Cramér‐von Mises statistics are given for the Poisson distribution. Power comparisons show that these statistics, particularly A2, give good overall tests of fit. The statistic A2 will be particularly useful for detecting distributions where the variance is close to the mean, but which are not Poisson.

Abstract

fr

Nous présentons ici des tests de validité de l'ajustement fondés sur les statistiques de Cramér‐von Mises pour la distribution Poisson. Des comparaisons de pouvoir démontrent que ces statistiques, et particulièrement A2 donnent en général de bons tests de l'ajustement. La statistique A2 sera particulièrement utile pour détecter des distributions où la variance est proche de la moyenne, mais qui ne sont pas Poisson.

Number of times cited according to CrossRef: 40

  • Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry, Computational Statistics & Data Analysis, 10.1016/j.csda.2019.106878, (106878), (2019).
  • On goodness of fit tests for the Poisson, negative binomial and binomial distributions, Statistical Papers, 10.1007/s00362-016-0820-5, 60, 1, (1-18), (2016).
  • Selecting series size where the generalized Pareto distribution best fits, Journal of Hydrology, 10.1016/j.jhydrol.2016.07.038, 541, (778-786), (2016).
  • THE INTERMEDIATE LUMINOSITY OPTICAL TRANSIENT SN 2010DA: THE PROGENITOR, ERUPTION, AND AFTERMATH OF A PECULIAR SUPERGIANT HIGH-MASS X-RAY BINARY, The Astrophysical Journal, 10.3847/0004-637X/830/1/11, 830, 1, (11), (2016).
  • Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals, PLOS ONE, 10.1371/journal.pone.0151235, 11, 3, (e0151235), (2016).
  • Statistical Distribution Models: Goodness of Fit Tests, International Encyclopedia of the Social & Behavioral Sciences, 10.1016/B978-0-08-097086-8.42047-7, (397-404), (2015).
  • On the Power Performance of Test Statistics for the Generalized Rayleigh Interval Grouped Data, Open Journal of Statistics, 10.4236/ojs.2015.55049, 05, 05, (474-482), (2015).
  • A Class of Goodness-of-fit Tests Based on Transformation, Communications in Statistics - Theory and Methods, 10.1080/03610926.2012.673673, 43, 8, (1708-1735), (2014).
  • A similarity index for storm runoff due to saturation excess overland flow, Journal of Hydrology, 10.1016/j.jhydrol.2014.03.021, 513, (241-255), (2014).
  • Detecting 3D Spatial Clustering of Particles in Nanocomposites Based on Cross-Sectional Images, Technometrics, 10.1080/00401706.2013.804440, 56, 2, (212-224), (2014).
  • Relationships between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs, Physical Review Letters, 10.1103/PhysRevLett.112.145901, 112, 14, (2014).
  • Applications of Modified Chi-Squared Tests, Chi-Squared Goodness of Fit Tests with Applications, 10.1016/B978-0-12-397194-4.00007-7, (139-165), (2013).
  • Bibliography, Chi-Squared Goodness of Fit Tests with Applications, 10.1016/B978-0-12-397194-4.00016-8, (215-226), (2013).
  • Goodness-of-fit testing for accident models with low means, Accident Analysis & Prevention, 10.1016/j.aap.2012.11.007, 61, (78-86), (2013).
  • An exact Kolmogorov–Smirnov test for the Poisson distribution with unknown mean, Journal of Statistical Computation and Simulation, 10.1080/00949655.2011.563740, 82, 7, (1023-1033), (2012).
  • Easily applied tests of fit for the Rayleigh distribution, Sankhya B, 10.1007/s13571-011-0011-2, 72, 2, (254-263), (2011).
  • References, Smooth Tests of Goodness of Fit, 10.1002/9780470824443, (259-268), (2010).
  • Cramér‐von Mises statistics for discrete distributions with unknown parameters, Canadian Journal of Statistics, 10.1002/cjs.5550350111, 35, 1, (125-133), (2010).
  • A Statistical Reanalysis of the Classical Rutherford's Experiment, Communications in Statistics - Simulation and Computation, 10.1080/03610910903355499, 39, 1, (157-171), (2009).
  • Characterizing and Modeling Temporal and Spatial Trends in Rainfall Extremes, Journal of Hydrometeorology, 10.1175/2008JHM1007.1, 10, 1, (241-253), (2009).
  • Cramer–von Mises Tests for the Compatibility of Two Software Operating Environments, Technometrics, 10.1198/004017007000000335, 50, 1, (53-63), (2008).
  • Smooth Goodness-of-Fit Specification Tests Under the Lagrange Multiplier Principle, Communications in Statistics - Theory and Methods, 10.1080/03610920701653185, 37, 3, (443-459), (2008).
  • A class of count models and a new consistent test for the Poisson distribution, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2007.12.011, 138, 12, (3722-3732), (2008).
  • Does software reliability growth behavior follow a non-homogeneous Poisson process, Information and Software Technology, 10.1016/j.infsof.2007.12.001, 50, 12, (1232-1247), (2008).
  • References, Nonparametrics for Sensory Science, 10.1002/9780470752586, (165-170), (2008).
  • Testing fit for the grouped exponential distribution, Canadian Journal of Statistics, 10.2307/3316040, 29, 3, (451-458), (2008).
  • Bayesian assessment of goodness of fit against nonparametric alternatives, Canadian Journal of Statistics, 10.2307/3315982, 28, 2, (327-342), (2008).
  • A new goodness-of-fit test for certain bivariate distributions applicable to traffic accidents, Statistical Methodology, 10.1016/j.stamet.2006.02.002, 4, 1, (22-34), (2007).
  • Goodness of Fit for Discrete Random Variables Using the Conditional Density, Metrika, 10.1007/s00184-006-0035-1, 64, 1, (77-94), (2006).
  • Improved Testing for the Poisson Distribution Using Chisquared Components with Data Dependent Cells, Communications in Statistics - Simulation and Computation, 10.1081/SAC-200053153, 34, 1, (85-96), (2005).
  • Assessing the Goodness-of-Fit of Statistical Distributions When Data Are Grouped, Mathematical Geology, 10.1007/s11004-005-1558-0, 37, 3, (261-276), (2005).
  • Testing and improving predictions of scour and fill depths in a northern California coastal stream, River Research and Applications, 10.1002/rra.863, 21, 8, (909-923), (2005).
  • Mean distance test of Poisson distribution, Statistics & Probability Letters, 10.1016/j.spl.2004.01.005, 67, 3, (241-247), (2004).
  • Tests of Fit for the Geometric Distribution, Communications in Statistics - Simulation and Computation, 10.1081/SAC-120023878, 32, 4, (1065-1078), (2003).
  • Tests for the response distribution in a Poisson regression model, Journal of Statistical Planning and Inference, 10.1016/S0378-3758(02)00275-6, 108, 1-2, (137-154), (2002).
  • Goodness-of-Fit Tests for the Generalized Pareto Distribution, Technometrics, 10.1198/00401700152672573, 43, 4, (478-484), (2001).
  • Goodness-of-fit Tests and Diagnostics, International Encyclopedia of the Social & Behavioral Sciences, 10.1016/B0-08-043076-7/00437-X, (6305-6310), (2001).
  • Recent and classical goodness-of-fit tests for the Poisson distribution, Journal of Statistical Planning and Inference, 10.1016/S0378-3758(00)00114-2, 90, 2, (207-225), (2000).
  • Tests of fit for discrete distributions based on the probability generating function, Communications in Statistics - Simulation and Computation, 10.1080/03610919908813547, 28, 1, (259-274), (1999).
  • Goodness of fit for the Poisson distribution, Statistics & Probability Letters, 10.1016/S0167-7152(99)00017-6, 44, 3, (259-265), (1999).

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.