Cramér‐von Mises tests of fit for the Poisson distribution†
This work was supported in part by the Natural Science and Engineering Research Council of Canada.
Abstract
enGoodness‐of‐fit tests based on the Cramér‐von Mises statistics are given for the Poisson distribution. Power comparisons show that these statistics, particularly A2, give good overall tests of fit. The statistic A2 will be particularly useful for detecting distributions where the variance is close to the mean, but which are not Poisson.
Abstract
frNous présentons ici des tests de validité de l'ajustement fondés sur les statistiques de Cramér‐von Mises pour la distribution Poisson. Des comparaisons de pouvoir démontrent que ces statistiques, et particulièrement A2 donnent en général de bons tests de l'ajustement. La statistique A2 sera particulièrement utile pour détecter des distributions où la variance est proche de la moyenne, mais qui ne sont pas Poisson.
Citing Literature
Number of times cited according to CrossRef: 40
- Pedro Puig, Christian Weiß, Some goodness-of-fit tests for the Poisson distribution with applications in Biodosimetry, Computational Statistics & Data Analysis, 10.1016/j.csda.2019.106878, (106878), (2019).
- J. I. Beltrán-Beltrán, F. J. O’Reilly, On goodness of fit tests for the Poisson, negative binomial and binomial distributions, Statistical Papers, 10.1007/s00362-016-0820-5, 60, 1, (1-18), (2016).
- Arie Ben-Zvi, Selecting series size where the generalized Pareto distribution best fits, Journal of Hydrology, 10.1016/j.jhydrol.2016.07.038, 541, (778-786), (2016).
- V. A. Villar, E. Berger, R. Chornock, R. Margutti, T. Laskar, P. J. Brown, P. K. Blanchard, I. Czekala, R. Lunnan, M. T. Reynolds, THE INTERMEDIATE LUMINOSITY OPTICAL TRANSIENT SN 2010DA: THE PROGENITOR, ERUPTION, AND AFTERMATH OF A PECULIAR SUPERGIANT HIGH-MASS X-RAY BINARY, The Astrophysical Journal, 10.3847/0004-637X/830/1/11, 830, 1, (11), (2016).
- M. Lesperance, W. J. Reed, M. A. Stephens, C. Tsao, B. Wilton, Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals, PLOS ONE, 10.1371/journal.pone.0151235, 11, 3, (e0151235), (2016).
- John C.W. Rayner, Oliver Thas, Donald J. Best, Statistical Distribution Models: Goodness of Fit Tests, International Encyclopedia of the Social & Behavioral Sciences, 10.1016/B978-0-08-097086-8.42047-7, (397-404), (2015).
- Hatim Solayman Migdadi, On the Power Performance of Test Statistics for the Generalized Rayleigh Interval Grouped Data, Open Journal of Statistics, 10.4236/ojs.2015.55049, 05, 05, (474-482), (2015).
- Simos G. Meintanis, Ma Dolores JimÉnez Gamero, V. Alba-fernÁndez, A Class of Goodness-of-fit Tests Based on Transformation, Communications in Statistics - Theory and Methods, 10.1080/03610926.2012.673673, 43, 8, (1708-1735), (2014).
- Bryson C. Bates, Santosh K. Aryal, A similarity index for storm runoff due to saturation excess overland flow, Journal of Hydrology, 10.1016/j.jhydrol.2014.03.021, 513, (241-255), (2014).
- Qiang Zhou, Junyi Zhou, Michael De Cicco, Shiyu Zhou, Xiaochun Li, Detecting 3D Spatial Clustering of Particles in Nanocomposites Based on Cross-Sectional Images, Technometrics, 10.1080/00401706.2013.804440, 56, 2, (212-224), (2014).
- Benjamin J. Morgan, Paul A. Madden, Relationships between Atomic Diffusion Mechanisms and Ensemble Transport Coefficients in Crystalline Polymorphs, Physical Review Letters, 10.1103/PhysRevLett.112.145901, 112, 14, (2014).
- N. Balakrishnan, Vassilly Voinov, M.S Nikulin, Applications of Modified Chi-Squared Tests, Chi-Squared Goodness of Fit Tests with Applications, 10.1016/B978-0-12-397194-4.00007-7, (139-165), (2013).
- Bibliography, Chi-Squared Goodness of Fit Tests with Applications, 10.1016/B978-0-12-397194-4.00016-8, (215-226), (2013).
- Zhirui Ye, Yunlong Zhang, Dominique Lord, Goodness-of-fit testing for accident models with low means, Accident Analysis & Prevention, 10.1016/j.aap.2012.11.007, 61, (78-86), (2013).
- Jesse Frey, An exact Kolmogorov–Smirnov test for the Poisson distribution with unknown mean, Journal of Statistical Computation and Simulation, 10.1080/00949655.2011.563740, 82, 7, (1023-1033), (2012).
- D. J. Best, J. C. W. Rayner, O. Thas, Easily applied tests of fit for the Rayleigh distribution, Sankhya B, 10.1007/s13571-011-0011-2, 72, 2, (254-263), (2011).
- J. C. W. Rayner, O. Thas, D. J. Best, References, Smooth Tests of Goodness of Fit, 10.1002/9780470824443, (259-268), (2010).
- Richard A. Lockhart, John J. Spinelli, Michael A. Stephens, Cramér‐von Mises statistics for discrete distributions with unknown parameters, Canadian Journal of Statistics, 10.1002/cjs.5550350111, 35, 1, (125-133), (2010).
- V. Voinov, E. Voinov, A Statistical Reanalysis of the Classical Rutherford's Experiment, Communications in Statistics - Simulation and Computation, 10.1080/03610910903355499, 39, 1, (157-171), (2009).
- Santosh K. Aryal, Bryson C. Bates, Edward P. Campbell, Yun Li, Mark J. Palmer, Neil R. Viney, Characterizing and Modeling Temporal and Spatial Trends in Rainfall Extremes, Journal of Hydrometeorology, 10.1175/2008JHM1007.1, 10, 1, (241-253), (2009).
- D. R Jeske, R. A Lockhart, M. A Stephens, Q Zhang, Cramer–von Mises Tests for the Compatibility of Two Software Operating Environments, Technometrics, 10.1198/004017007000000335, 50, 1, (53-63), (2008).
- Soku Byoun, Smooth Goodness-of-Fit Specification Tests Under the Lagrange Multiplier Principle, Communications in Statistics - Theory and Methods, 10.1080/03610920701653185, 37, 3, (443-459), (2008).
- S.G. Meintanis, Ya.Yu. Nikitin, A class of count models and a new consistent test for the Poisson distribution, Journal of Statistical Planning and Inference, 10.1016/j.jspi.2007.12.011, 138, 12, (3722-3732), (2008).
- Kai-Yuan Cai, De-Bin Hu, Cheng-Gang Bai, Hai Hu, Tao Jing, Does software reliability growth behavior follow a non-homogeneous Poisson process, Information and Software Technology, 10.1016/j.infsof.2007.12.001, 50, 12, (1232-1247), (2008).
- J.C.W. Rayner, D.J. Best, P.B. Brockhoff, G.D. Rayner, References, Nonparametrics for Sensory Science, 10.1002/9780470752586, (165-170), (2008).
- John J. Spinelli, Testing fit for the grouped exponential distribution, Canadian Journal of Statistics, 10.2307/3316040, 29, 3, (451-458), (2008).
- Caterina Conigliani, J. Iván Castro, Anthony O'HAGAN, Bayesian assessment of goodness of fit against nonparametric alternatives, Canadian Journal of Statistics, 10.2307/3315982, 28, 2, (327-342), (2008).
- Simos G. Meintanis, A new goodness-of-fit test for certain bivariate distributions applicable to traffic accidents, Statistical Methodology, 10.1016/j.stamet.2006.02.002, 4, 1, (22-34), (2007).
- José M. González-Barrios, Federico O’Reilly, Raúl Rueda, Goodness of Fit for Discrete Random Variables Using the Conditional Density, Metrika, 10.1007/s00184-006-0035-1, 64, 1, (77-94), (2006).
- D. J. Best, J. C. W. Rayner, Improved Testing for the Poisson Distribution Using Chisquared Components with Data Dependent Cells, Communications in Statistics - Simulation and Computation, 10.1081/SAC-200053153, 34, 1, (85-96), (2005).
- Judith K. Haschenburger, John J. Spinelli, Assessing the Goodness-of-Fit of Statistical Distributions When Data Are Grouped, Mathematical Geology, 10.1007/s11004-005-1558-0, 37, 3, (261-276), (2005).
- Paul E. Bigelow, Testing and improving predictions of scour and fill depths in a northern California coastal stream, River Research and Applications, 10.1002/rra.863, 21, 8, (909-923), (2005).
- Gábor J Székely, Maria L Rizzo, Mean distance test of Poisson distribution, Statistics & Probability Letters, 10.1016/j.spl.2004.01.005, 67, 3, (241-247), (2004).
- D. J. Best, J. C. W. Rayner, Tests of Fit for the Geometric Distribution, Communications in Statistics - Simulation and Computation, 10.1081/SAC-120023878, 32, 4, (1065-1078), (2003).
- John J. Spinelli, Richard A. Lockhart, Michael A. Stephens, Tests for the response distribution in a Poisson regression model, Journal of Statistical Planning and Inference, 10.1016/S0378-3758(02)00275-6, 108, 1-2, (137-154), (2002).
- V Choulakian, M. A Stephens, Goodness-of-Fit Tests for the Generalized Pareto Distribution, Technometrics, 10.1198/00401700152672573, 43, 4, (478-484), (2001).
- J.C.W. Rayner, D.J. Best, Goodness-of-fit Tests and Diagnostics, International Encyclopedia of the Social & Behavioral Sciences, 10.1016/B0-08-043076-7/00437-X, (6305-6310), (2001).
- Nora Gürtler, Norbert Henze, Recent and classical goodness-of-fit tests for the Poisson distribution, Journal of Statistical Planning and Inference, 10.1016/S0378-3758(00)00114-2, 90, 2, (207-225), (2000).
- R. Rueda, F. O’ Reilly, Tests of fit for discrete distributions based on the probability generating function, Communications in Statistics - Simulation and Computation, 10.1080/03610919908813547, 28, 1, (259-274), (1999).
- D.J. Best, J.C.W. Rayner, Goodness of fit for the Poisson distribution, Statistics & Probability Letters, 10.1016/S0167-7152(99)00017-6, 44, 3, (259-265), (1999).




