Testing fit for the grouped exponential distribution
Abstract
enGrouped data can often arise due to the lack of resolution of the measurement instruments; they also arise when data are deliberately rounded to a certain accuracy and are presented, say, in the form of a histogram. The author uses statistics of the Cramér‐von Mises type to test for the exponential distribution when data are grouped.
Abstract
frUn test d'adéquation pour la distribution exponentielle groupée
Des données groupées par classe peuvent survenir lorsque la résolution des instruments avec lesquels elles ont été mesurées est faible ou lorsque les observations sont délibérément arrondies et se présentent, disons, sous la forme d'un histogramme. L'auteur utilise des statistiques de type Cramér–von Mises pour tester l'hypothèse que les données ainsi regroupées proviennent d'une loi exponentielle.
Citing Literature
Number of times cited according to CrossRef: 9
- M. Lesperance, W. J. Reed, M. A. Stephens, C. Tsao, B. Wilton, Assessing Conformance with Benford’s Law: Goodness-Of-Fit Tests and Simultaneous Confidence Intervals, PLOS ONE, 10.1371/journal.pone.0151235, 11, 3, (e0151235), (2016).
- Hatim Solayman Migdadi, On the Power Performance of Test Statistics for the Generalized Rayleigh Interval Grouped Data, Open Journal of Statistics, 10.4236/ojs.2015.55049, 05, 05, (474-482), (2015).
- Gunnar Taraldsen, Analysis of rounded exponential data, Journal of Applied Statistics, 10.1080/02664761003692431, 38, 5, (977-986), (2011).
- J. C. W. Rayner, O. Thas, D. J. Best, References, Smooth Tests of Goodness of Fit, 10.1002/9780470824443, (259-268), (2010).
- Richard A. Lockhart, John J. Spinelli, Michael A. Stephens, Cramér‐von Mises statistics for discrete distributions with unknown parameters, Canadian Journal of Statistics, 10.1002/cjs.5550350111, 35, 1, (125-133), (2010).
- D.J. Best, J.C.W. Rayner, Chi-squared components for tests of fit and improved models for the grouped exponential distribution, Computational Statistics & Data Analysis, 10.1016/j.csda.2006.03.014, 51, 8, (3946-3954), (2007).
- Judith K. Haschenburger, John J. Spinelli, Assessing the Goodness-of-Fit of Statistical Distributions When Data Are Grouped, Mathematical Geology, 10.1007/s11004-005-1558-0, 37, 3, (261-276), (2005).
- Paul E. Bigelow, Testing and improving predictions of scour and fill depths in a northern California coastal stream, River Research and Applications, 10.1002/rra.863, 21, 8, (909-923), (2005).
- D. J. Best, J. C. W. Rayner, Tests of Fit for the Geometric Distribution, Communications in Statistics - Simulation and Computation, 10.1081/SAC-120023878, 32, 4, (1065-1078), (2003).




