A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a √n‐Consistent Conditional Estimator
Abstract
A model for binary panel data is introduced which allows for state dependence and unobserved heterogeneity beyond the effect of available covariates. The model is of quadratic exponential type and its structure closely resembles that of the dynamic logit model. However, it has the advantage of being easily estimable via conditional likelihood with at least two observations (further to an initial observation) and even in the presence of time dummies among the regressors.
Citing Literature
Number of times cited according to CrossRef: 29
- Sun-Joo Cho, Sarah Brown-Schmidt, Paul De Boeck, Jianhong Shen, Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model, Psychometrika, 10.1007/s11336-020-09694-6, (2020).
- Soyoon Weon, David W. Rothwell, Dynamics of Asset Poverty in South Korea, Social Indicators Research, 10.1007/s11205-020-02320-z, (2020).
- Alexander Torgovitsky, Nonparametric Inference on State Dependence in Unemployment, SSRN Electronic Journal, 10.2139/ssrn.3332088, (2019).
- Mohammad Arshad Rahman, Angela Vossmeyer, Estimation and Applications of Quantile Regression for Binary Longitudinal Data, Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B, 10.1108/S0731-90532019000040B009, (157-191), (2019).
- Konstantin A. Kholodilin, Claus Michelsen, Zehn Jahre nach dem großen Knall: wie ist es um die Stabilität der internationalen Immobilienmärkte bestellt?Ten years after a Big Bang: How stable are the international housing markets?, Zeitschrift für Immobilienökonomie, 10.1365/s41056-019-00034-z, (2019).
- Chung‐Hua Shen, Jun‐Guo Shi, Meng‐Wen Wu, Is finance a veil? Lead‐and‐lag relationship between financial and business cycles: The case of China, European Financial Management, 10.1111/eufm.12193, 25, 4, (978-1012), (2018).
- Ariadna Dumitrescu, Mohammed Zakriya, Stakeholders and the Stock Price Crash Risk: What Matters in Corporate Social Performance?, SSRN Electronic Journal, 10.2139/ssrn.3305213, (2018).
- Wenhua Li, Tsuyoshi Adachi, Quantitative estimation of resource nationalism by binary choice logit model for panel data, Resources Policy, 10.1016/j.resourpol.2017.07.002, 53, (247-258), (2017).
- Manuel Arellano, Stéphane Bonhomme, Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models, Annual Review of Economics, 10.1146/annurev-economics-063016-104346, 9, 1, (471-496), (2017).
- Majid M. Al-Sadoon, Tong Li, M. Hashem Pesaran, Exponential class of dynamic binary choice panel data models with fixed effects, Econometric Reviews, 10.1080/07474938.2017.1307597, 36, 6-9, (898-927), (2017).
- Wei Gao, Wicher Bergsma, Qiwei Yao, Estimation for Dynamic and Static Panel Probit Models with Large Individual Effects, Journal of Time Series Analysis, 10.1111/jtsa.12178, 38, 2, (266-284), (2016).
- Claudia Pigini, Andrea F. Presbitero, Alberto Zazzaro, State dependence in access to credit, Journal of Financial Stability, 10.1016/j.jfs.2016.08.003, 27, (17-34), (2016).
- R. Prabhakar Rao, Brajendra C. Sutradhar, V. N. Pandit, Longitudinal Mixed Models with t Random Effects for Repeated Count and Binary Data, Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data, 10.1007/978-3-319-31260-6_2, (41-71), (2016).
- Majid Al-Sadoon, Tong Li, M. Hashem Pesaran, An Exponential Class of Dynamic Binary Choice Panel Data Models with Fixed Effects, SSRN Electronic Journal, 10.2139/ssrn.2720447, (2016).
- Sven Schreiber, Miriam Beblo, Leisure and Housing Consumption after Retirement: New Evidence on the Life-Cycle Hypothesis, SSRN Electronic Journal, 10.2139/ssrn.2806915, (2016).
- Francesco Bartolucci, Valentina Nigro, Claudia Pigini, Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model, Econometric Reviews, 10.1080/07474938.2015.1060039, 37, 1, (61-88), (2015).
- Marco Cosconati, Alessandro Sembenelli, Firm Subsidies and the Innovation Output: What Can We Learn by Looking at Multiple Investment Inputs?, Italian Economic Journal, 10.1007/s40797-015-0025-4, 2, 1, (31-55), (2015).
- Giulia Bettin, Riccardo Lucchetti, Steady streams and sudden bursts: persistence patterns in remittance decisions, Journal of Population Economics, 10.1007/s00148-015-0565-9, 29, 1, (263-292), (2015).
- Minjeong Jeon, Sophia Rabe-Hesketh, An autoregressive growth model for longitudinal item analysis, Psychometrika, 10.1007/s11336-015-9489-2, 81, 3, (830-850), (2015).
- Chandra Bhat, A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation, Transportation, 10.1007/s11116-015-9651-9, 42, 5, (879-914), (2015).
- Alexander Torgovitsky, Partial Identification of State Dependence, SSRN Electronic Journal, 10.2139/ssrn.2564305, (2015).
- F. Bartolucci, R. Bellio, A. Salvan, N. Sartori, Modified Profile Likelihood for Fixed-Effects Panel Data Models, Econometric Reviews, 10.1080/07474938.2014.975642, 35, 7, (1271-1289), (2014).
- Pauline Givord, Lionel Wilner, When Does the Stepping‐Stone Work? Fixed‐Term Contracts Versus Temporary Agency Work in Changing Economic Conditions, Journal of Applied Econometrics, 10.1002/jae.2394, 30, 5, (787-805), (2014).
- Qiao Wang, Wenju Wang, An analysis of Chinese government expenditure using dynamic binary panel data, Applied Economics, 10.1080/00036846.2013.870655, 46, 11, (1259-1266), (2014).
- Sarah Brown, Pulak Ghosh, Karl Taylor, The existence and persistence of household financial hardship: A Bayesian multivariate dynamic logit framework, Journal of Banking & Finance, 10.1016/j.jbankfin.2014.05.022, 46, (285-298), (2014).
- GIUSEPPE CAPPELLETTI, GIOVANNI GUAZZAROTTI, PIETRO TOMMASINO, The effect of age on portfolio choices: evidence from an Italian pension fund, Journal of Pension Economics and Finance, 10.1017/S1474747213000395, 13, 4, (389-419), (2014).
- Elena Giarda, Persistency of financial distress amongst Italian households: Evidence from dynamic models for binary panel data, Journal of Banking & Finance, 10.1016/j.jbankfin.2013.05.005, 37, 9, (3425-3434), (2013).
- Francesco Bartolucci, Valentina Nigro, Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data, Journal of Econometrics, 10.1016/j.jeconom.2012.03.004, 170, 1, (102-116), (2012).
- Francesco Bartolucci, Ruggero Bellio, Alessandra Salvan, Nicola Sartori, Modified Profile Likelihood for Panel Data Models, SSRN Electronic Journal, 10.2139/ssrn.2000666, (2012).




