Biometrics

Evaluating Candidate Principal Surrogate Endpoints

Peter B. Gilbert

Corresponding Author

Fred Hutchinson Cancer Research Center and Department of Biostatistics, University of Washington, Seattle, Washington 98109, U.S.A.

email:pgilbert@scharp.orgSearch for more papers by this author
Michael G. Hudgens

Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A.

Search for more papers by this author
First published: 24 November 2008
Citations: 86
Get access to the full version of this article. View access options below.
Institutional Login
Loading institution options...

If you have previously obtained access with your personal account, .

    • View the article PDF and any associated supplements and figures for a period of 48 hours.
    • Article can not be printed.
    • Article can not be downloaded.
    • Article can not be redistributed.
    • Unlimited viewing of the article PDF and any associated supplements and figures.
    • Article can not be printed.
    • Article can not be downloaded.
    • Article can not be redistributed.
    • Unlimited viewing of the article/chapter PDF and any associated supplements and figures.
    • Article/chapter can be printed.
    • Article/chapter can be downloaded.
    • Article/chapter can not be redistributed.

Abstract

Summary Frangakis and Rubin (2002, Biometrics58, 21–29) proposed a new definition of a surrogate endpoint (a “principal” surrogate) based on causal effects. We introduce an estimand for evaluating a principal surrogate, the causal effect predictiveness (CEP) surface, which quantifies how well causal treatment effects on the biomarker predict causal treatment effects on the clinical endpoint. Although the CEP surface is not identifiable due to missing potential outcomes, it can be identified by incorporating a baseline covariate(s) that predicts the biomarker. Given case–cohort sampling of such a baseline predictor and the biomarker in a large blinded randomized clinical trial, we develop an estimated likelihood method for estimating the CEP surface. This estimation assesses the “surrogate value” of the biomarker for reliably predicting clinical treatment effects for the same or similar setting as the trial. A CEP surface plot provides a way to compare the surrogate value of multiple biomarkers. The approach is illustrated by the problem of assessing an immune response to a vaccine as a surrogate endpoint for infection.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.