INDEX

α, 142, 172
B₀, 72
B₁, 228
B₂, 72
B₃, 180
B₄, 228
B₅, 72
C, 97, 100, 105, 147, 152, 180
C₉₅, 278
Cₓ, 234
Cₓₙ, 237
Cₓ₁, 228
Cₓ₉₅, 240
Cₓ₂, 228
Cₓ₃, 234
Cₓ₅, 237
Cₓ₁₁, 228
Cₓ₉₅, 240
Cₓ₅, m=2, 234
Cₓ₅, many m, 237
Cₓ₅, M₉₅, 240
Cₓ₁₁, 242

αₗ, 142, 172
Dₜ, 174
Dₖ, 97
Eff₁₃, 86, 117
Eff₁₅, 86, 112, 151, 157, 188
Iₚ, 72
iv, 97
iv₉, 142, 172
L, 167
Lₗ, 167
m, 167
Mₐ₁, 174

mₐ, 242
nₐₙ, i₂, ..., iₙ, 79
vₐ(1), 242
Nₛ, 242
xₐ, 172
xₐ, i, 142
A, 69, 80, 97, 105, 118, 144, 152, 174
Aₓₙ, 236
Aₓ₁, 228
Aₓ₂, 228
Aₓₙ, 242

A-efficiency, 86
A-optimal design, 84
adding another factor, 265
affine plane, 24
affirmation bias, 12
alias structure, 29
aliased effects, 29
alternative specific attributes, 11
associated distribution, 67
asymmetric factorial design, 16
attribute, 3, 15
alternative specific, 11
availability designs, 11
balance
level, 89
utility, 89
balanced incomplete block design, 53
INDEX

symmetric, 53
bias
 affirmation, 12
 policy response, 12
 rationalization, 12
BIBD, 53, 244
binary response experiment, 2-5, 233-234
block diagonal, 76, 210
Bradley-Terry model, 60-79
 information matrix, 68
 likelihood function, 61
 maximum likelihood estimation, 62-65
 ML estimates
 convergence, 65-67
choice experiments
 binary attributes
 pairs, 95-135
 various choice set sizes, 242
 choice models, 58-60
 choice probabilities, 59-60
 choice set, 2
 choice set size
 optimal, 237-243
 main effects and two-factor interactions, binary attributes, 240
 main effects only, 237-240
 class of competing designs, 95, 138
 cognitive complexity, 12
 collapsed attributes, 257
 collapsing levels, 46, 258
 common base and none options, 236-237
 common base option, 2, 8-9, 234-236
 comparison, 19, 20
 independent, 19, 20
 orthogonal, 20
 complete factorial design, 16-25
 confounded effects, 29
 connected design, 66, 78
 contractive replacement, 47, 260, 267
 contrast, 20
 geometric, 24
 independent, 20
 orthogonal, 20
 orthogonal polynomial, 21-22
 polynomial, 25
 contrast matrix, 72, 105
 binary attributes, 99, 144
 interaction effects, 100
 main effects, 100, 180
 main effects and two-factor interaction effects, 198
 normalized, 180

D-efficiency, 86
D-optimal design, 84
 any m
 asymmetric attributes, 187
 binary attributes, 149, 154
asymmetric attributes
 any m, 187
binary attributes
 any m, 149, 154
 paired comparisons, 103, 107
 paired comparisons
 binary attributes, 103, 107
D-optimal forced choice design
 binary attributes
 any m, 159-164
 defining contrasts, 27, 33
 defining effects, 29
 defining equations, 27, 33
 independent, 27
design
 A-efficiency, 86
 A-optimal, 84
 connected, 66
 D-efficiency, 86
 D-optimal, 84
 DCE
 construction strategy, 279-287
 strategy comparison, 291-293
 E-optimal, 84
 efficiency, 85
 near-optimal, 159-164
 orthogonal, 89
 shifted, 89
difference family, 55
difference set, 54, 264
difference vector
 choice set of size m, asymmetric attributes, 169-173
 choice set of size m, binary attributes, 138-143
discrete choice experiment, 2
distribution
 associated, 67
dominating option, 3, 10, 133, 164, 261
E-optimal design, 84
effects
 aliased, 29
 confounded, 29
 defining, 29
 interaction, 17-19, 23-25
 main, 16-17, 19-20, 25
 simple, 16
efficiency, 85
 A-, 86
 D-, 86
experimen
 expansive replacement, 47, 260
 paired comparison, 60
factor, 15
 level, 15
 qualitative, 19
 quantitative, 19, 20
factorial design. 15
 \(2^k\). 16–19
 \(2^k\) regular fractional. 27–33
 \(3^k\). 19–24
 \(3^k\) regular fractional. 33–37
 alias structure. 29
 asymmetric. 16, 24–25
collapsing levels. 46
collapsing levels. 46
 complete. 16–25
 contractive replacement. 47
 expansive replacement. 47
fractional. 27
 interaction effects. 17–19, 23–25, 29
 higher-order. 18
two-factor. 17
irregular fractional. 27, 41–52
 resolution 3. 41
 resolution 5. 42
 main effects. 16–17, 19–20, 25
prime-power levels regular fractional. 39–41
 resolution 3. 39
 resolution 5. 40
regular fractional. 27–41
generator vector. 31, 37
 resolution 3, 29, 31, 43, 251–267
 resolution 4, 29, 271, 276–279
 resolution 5, 30, 31, 163, 271–276
 symmetric. 16
factorial designs
tables. 55
finite field. 37–39
 irreducible polynomial. 38
 primitive element. 39
 Fisher information matrix. 67
foldover. 78
foldover treatment. 98
forced choice. 95
forced choice experiment. 2, 5–7, 57
 optimal. 137, 167
forced choice stated preference experiment
 optimal. 137, 167
fractional factorial design. 27
 \(D\)-optimal design. binary attributes
 any \(m\). 159–164
 as starting design. 249
 irregular. 41–52
Galois field. 37–39
generator
 paired comparison design. 122
generator vector. 37
generators
 choosing. 264–267
 estimable set. 129
 fractional factorial designs. 31
 main effects
 asymmetric attributes. 191
 small. optimal choice experiments. 160, 163
Hadamard matrix. 55
higher-order interaction effect. 18
IIA. 83
independence from irrelevant alternatives. 83
independent comparison. 20
independent contrast. 20
independent defining equations. 27
indicator variable. 97
information matrix. 97
 Bradley–Terry model. 68
derivation. 174–180
derivation of. 97–99. 118–119, 143–147
 Fisher. 67
general form. 176
general form. binary attributes. 144
 main effect of attribute \(q\). 184
 main effects. 102, 148, 180, 184
 main effects and two-factor interactions. 105, 152, 201
interaction. 17–19, 23–24
 higher-order. 18, 24
 linear \(\times\) linear. 23
 linear \(\times\) quadratic. 23
 quadratic \(\times\) quadratic. 23
 three-factor. 18
two-factor. 17
interaction effects. 17–19, 23–25
definition by restriction. 29
irreducible polynomial. 38
irregular fractional factorial design. 27, 41–52
 resolution 3. 41
 resolution 5. 42
labeled options. 11
level. 3, 15
level balance. 89
lexicographic order. 97
main effects. 16–17, 19–20, 25
correlated. 257
 variance-covariance matrix. 74
main effects plan
 orthogonal. 42
matrix
 contrast. 72
 merit. 61
minimum overlap. 89
MNL model. 58, 79–83
model
 Bradley–Terry. 60–79
 GEV. 58, 83
 main effects and two-factor interactions. 105–117, 121–133, 152–159, 163–
 164, 197–210
 main effects only. 100–105, 119–121, 147–
 151, 160–162, 180–189
 mixed logit. 58
 MNL. 58, 79–83
probit, 58
multiplicative inverse, 38

near-optimal design, 159-164
main effects only, 251-267
main effects plus some two-factor interactions
non-binary attributes, 276-279
main effects plus two-factor interactions.
269-279
binary attributes, 271-272
non-binary attributes, 272-276
null hypothesis
usual, 98, 144, 174

OMEP, 42
optimal choice set size, 237-243
optimal choice sets, 137, 167
asymmetric attributes
m2, 2, 167-210
binary attributes
m2, 2, 137-165
pairs, 95-117

optimality
A-, 84
D-, 84
E-, 84
options
labeled, 11
orthogonal array, 42
adding one more factor, 49
asymmetric, 42
collapsing levels, 46
construction, 43-44, 46, 47
contractive replacement, 47
expansive replacement, 47
index, 42
juxtaposing two OAs, 50
number of constraints, 42
number of levels, 42
parent design, 55
recursive construction, 49, 50
saturated, 47
strength, 42
symmetric, 43-44
table of, 55
resolution 3, 55
tight, 47, 261
orthogonal comparison, 20
orthogonal contrast, 20
orthogonal main effects plan, 42
orthogonal polynomial, 21-22
orthogonality, 89
orthonormal matrix, 72

paired comparison design
binary attributes, 95-135
A-optimal, 105, 113

D-optimal, 103
D-optimal, 107
fractional factorial, 118-119
paired comparison experiment, 60
partial profiles, 243-244
pencil, 24, 35
policy response bias, 12
polynomial
irreducible, 38
primitive element, 39
principal fraction, 28
principal minor, 74
prior information, 245-246
pseudo-factor, 39
qualitative factor, 19
quantitative factor, 19

rationalization bias, 12
regular fractional factorial
2k resolution 3, 31
2k resolution 5, 33
3k resolution 3, 37
3k resolution 5, 37
regular fractional factorial design, 27-41
2k, 27-33
3k, 33-37
generator vector, 31, 37
prime-power levels, 39-41
resolution 3, 39
resolution 5, 40
resolution 3 factorial design, 29, 31, 251-267
resolution 4 factorial design, 29, 271, 276-279
resolution 5 factorial design, 30, 31, 271-276
ring of polynomials, 39
SBIBD, 53
shifted design, 89
simple effects, 16
starting design, 249
obtaining, 256-263, 269-271
stated choice experiment, 2
stated preference choice experiment, 2
symmetric balanced incomplete block design, 53
symmetric factorial design, 16
tight orthogonal array, 261
treatment combinations, 15
standard order, 97
unrealistic, 51
Yates standard order, 97
two-factor interaction effect, 17
unrealistic treatment combination, 9-10, 51, 262
utility, 58
utility balance, 89
variance-covariance matrix, 84
main effects, 74
various choice set sizes, 242
Yates standard order, 97