INDEX

Absorbent pads, 19
active materials in, 204–205
European regulation of, 197
iron oxide-based, 205–206
irradiation and, 105–106
testing, 205–206
Absorbers. See Oxygen control; Scavengers
Acceptance, consumer, 9, 14, 142, 166–174
of active packaging, 143
communication and, 143
education in, 169–171
of innovation, 168–169
risk/fear perception and, 171–174
Acetic acid, diffusion coefficient for, 46
Acetyltributyl citrate (ATBC), 96–97
Acquisition pattern analysis (APA), 161
ACTIPAK, 143, 188–189, 202
Active packaging, 17–28
as absorbent material, 204–205
acceptance of, 143
advantages/disadvantages of, 15–16
antimicrobials for, 20–21
carbon dioxide control in, 20–21
definition of, 17, 189
European standpoint on, 187–211
future of, 216–219
migration in, 200–207
moisture control and, 18–19, 25
oxygen control in, 19–20
as releasing material, 203–204
technologies in, 18
Additives
absorbent pads and, 105
in edible coatings, 29–30, 219
European regulation of, 192–193
Adhesion, of edible coatings, 39
Adhesives, 14, 105
Adjuvants, 93, 95–97
Advertising, packaging and, 10, 141
Aggregate discrete choice modeling, 160
Aging of the population, 215
Allyl isothiocyanate (AIT), 37
Aluminum, in high-pressure packaging, 69
Analytical target cascading, 167
Antagonistic cultures, 218, 220–222
Antimicrobials
active packaging and, 143
activity measurement for, 39–45
advantages/disadvantages of natural, 16
allyl isothiocyanate (AIT), 37
in biopolymers, 34–35
carbon dioxide control and, 20–21
chitosan, 34, 37
coatings for nonthermal processing,
47–48
consumer attitudes toward, 177
contact, 21
diffusion of, 45–47
in edible coatings, 29–52, 30,
31–38, 219–220
essential oils, 35, 37
evaluating effectiveness of, 217–218
future of, 217–218
ionizing radiation and, 26
lactoperoxidase system, 35, 36
lysozyme, 31, 34, 35, 36
MAP/RO and, 26
nisin, 34–35, 36
noncontact, 21
pediocin, 34, 36–37
plant extracts, 37–38
Antioxidants, 93, 95–96
Argon, in modified atmosphere packaging,
54–55, 61
Ascorbic acid, 19
Aseptic processing, 12, 81–82
Assortment size, 165–166
ATBC. See Acetyltributyl citrate (ATBC)
Atitudes
change model of, 169
multiattribute models of, 169
prior, in decision-making, 163–164
toward genetically modified foods, 174
Attitude theory, 168–169
Attractiveness, 168–169
Attractive quality attributes, 144
AUTO-ID Labs, 127

Bacillus stearothermophilus, 6
Backscattering, 125–126
Bacteriocins. See also Antimicrobials
advantages/disadvantages of, 16
in edible coatings, 30, 35
Barcode systems, 118, 128, 133
Barrier properties
high-pressure processing and, 70, 72
irradiation and, 75–77
Bayesian modeling, 160
Beaver Street Fisheries, 133
Behavior models, 148
BIN-IT, 134
Bioactive coatings. See Edible coatings
Biocontrol, 55–57
Biopolymer films, 34–35, 219. See also Edible coatings
Bioterrorism, 117, 135–136
Blinking, 4
Bovine growth hormone (rbGH), 172
Brand equity, 162
Brand extensions, 164–166
Brand-loyalty, 161
Bredahl, L., 169, 173
Brody, Aaron L., 17–28
Butylated hydroxyanisole/butylated hydroxytoluene (BHA/BHT), 19
Butz, P., 7–8

Carbon dioxide, 61, 218
Carbon dioxide control
in active packaging, 20–21
headspace gas composition assay and, 45
in high-pressure processing, 59
intelligent packaging and, 22
ionizing radiation and, 25
MAP/RO and, 26, 54–55, 55–57
Carbon monoxide packaging, 78
Case ready foods, 87
CEN (European Standardization Commission), 201, 203

Index

Chain scission, 75, 91–92
Chance, 158
Chang, C.-H., 164
Change model, attitude, 169
Check out, automatic, 22
Chitosan, 34, 37
Chromophthal Yellow, 106–107
Code of Federal Regulations (CFR), 38
on irradiation, 87–88, 88–89
on irradiation packaging materials, 92–93
Cognitive overload, 166
Cold sealing, 14
Collaboration, 9–10
Colorants, 11, 106–107
Communication, 9–10
brand extensions and, 165
consumer acceptance and, 143
Competability, 168–169
Compensatory screening rules, 163
Complexity, 168–169
Compliance, 194
Concurrent engineering, 167
Conjoint analysis, 160–161
Conjoint models, 147
Conjunctive screening rules, 163
Consumers
acceptance by, 9, 14, 166–174
acceptance of innovation by, 168–169
attitudes of, decision-making and, 163–164
behavior models, 148
choices by, 139–185
communication to, 143
decision-making by, 152–159
decision parameters for, 159–166
demand of for minimally processed products, 47–48, 53
demographics of, 215
desires of, compared with manufacturers’
desires, 141–142, 148–151
educating, 169–171
information for, 3, 10
labeling and, 145–146
package design and, 145
perceptions of, 144–148, 171–174
pricing and, 146–147
reaction of to packaging, 139
reservation prices for, 147
skepticism of, 145–146
survey of reactions to packaging, 174–179
trends in preferences of, 215–216
Convenience, 10, 215
customer desire for, 149–150
quality vs., 149–150
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposition effect, 155–156</td>
</tr>
<tr>
<td>Dowan, C., 171–172</td>
</tr>
<tr>
<td>EAS. See Electronic article surveillance (EAS)</td>
</tr>
<tr>
<td>E-beam processing, 6, 101–105, 109. See also Irradiation</td>
</tr>
<tr>
<td>Economic issues, 24</td>
</tr>
<tr>
<td>Edge effects, 68</td>
</tr>
<tr>
<td>Edible coatings, 29–52</td>
</tr>
<tr>
<td>activity measurement for, 39–45</td>
</tr>
<tr>
<td>advantages of, 30</td>
</tr>
<tr>
<td>antimicrobial diffusion in, 45–47</td>
</tr>
<tr>
<td>antimicrobials in, 31–38</td>
</tr>
<tr>
<td>base materials of, 31</td>
</tr>
<tr>
<td>composite, 33</td>
</tr>
<tr>
<td>development factors in, 38–39</td>
</tr>
<tr>
<td>future of, 219–220</td>
</tr>
<tr>
<td>for nonthermal processing, 47–48</td>
</tr>
<tr>
<td>purposes of, 29</td>
</tr>
<tr>
<td>EFSA. See European Food Safety Authority (EFSA)</td>
</tr>
<tr>
<td>Electrolux, 134</td>
</tr>
<tr>
<td>Electronic article surveillance (EAS), 129</td>
</tr>
<tr>
<td>Electronic product codes (EPCs), 124, 127–131</td>
</tr>
<tr>
<td>applications of, 129–130</td>
</tr>
<tr>
<td>barcodes and, 128</td>
</tr>
<tr>
<td>smart labels and, 128–129</td>
</tr>
<tr>
<td>standards for, 127</td>
</tr>
<tr>
<td>structure of, 127–128</td>
</tr>
<tr>
<td>Electrons. See Irradiation</td>
</tr>
<tr>
<td>Ellen, P.S., 145</td>
</tr>
<tr>
<td>EMB/973 Rev. 5B, 193–194</td>
</tr>
<tr>
<td>Emotions, in decision-making, 158</td>
</tr>
<tr>
<td>Endowment effects, 153–155</td>
</tr>
<tr>
<td>Energy resources, 215–216</td>
</tr>
<tr>
<td>Environmentalism, 145–146</td>
</tr>
<tr>
<td>Enzymes, 22, 30</td>
</tr>
<tr>
<td>EPC. See Electronic product codes (EPCs)</td>
</tr>
<tr>
<td>EPCglobal Network, 120, 127</td>
</tr>
<tr>
<td>Eroglu, D., 145</td>
</tr>
<tr>
<td>Escherichia coli, 9</td>
</tr>
<tr>
<td>MAP and, 56–57, 58</td>
</tr>
<tr>
<td>MAP with radiation and, 61–63</td>
</tr>
<tr>
<td>Essential oils, 37</td>
</tr>
<tr>
<td>Ethylene, 22</td>
</tr>
<tr>
<td>Ethylene vinyl acetate (EVA) films, 73</td>
</tr>
<tr>
<td>Ethylene-vinyl alcohol copolymer (EVOH), 94–95, 101–105</td>
</tr>
<tr>
<td>ETH Zurich, 134</td>
</tr>
<tr>
<td>European Commission, 173</td>
</tr>
</tbody>
</table>

Cooking, 4
Copolymer films, 96–97
Cost
 of edible coatings, 38
 of energy, 216
 of packaging materials, 141
in processor desires, 150–151
Credibility, 165, 169, 174
Critical region, 59–61
Cross-linking, 75, 91–92
CSP Corporation, 19
Cycle times, 167

Dandeo, L.M., 161
Decision-making, 152–159
 acceptance of innovation and, 168–169
 brands and, 164–166
 gains and losses in, 155–156
 influence of information on, 163–164
 mental accounting in, 156–159
 models of, 152–159
 prospect theory in, 152–153
 reference points in, 153–155
 screening in, 161–163
Declarations of compliance, 194
De Jong, A.R., 187–211
Delamination, 71, 73
Demographic changes, 215
Depolymerization, 13
Deprotonation, 68
DeSarbo, W.S., 160–161
Deschénes, L., 95
Desiccants, 18–19
Di-(2ethylhexyl)adipate (DEHA), 96–97
Diffusion coefficient (D), 45–47, 46
Dipole momentum, 126, 137
Direct inoculation test, 41, 43
Directive 82/711/EEC, 203
Directive 85/572/EEC, 203
Directive 89/109/EEC, 189, 193
Directive 97/48/EC, 205
Directive 2000/13/EC, 200
Directive 2001/95/EC, 198–199
Directive 2002/72/EC, 197, 207
Disaggregate discrete choice models, 160
Disc-covering test, 40, 43
Discontinuous batch processing, 68
Discrete choice models, 163
Disc-surface-spreading test, 40, 43
Disjunctive screening rules, 163
European Food Safety Authority (EFSA), 188, 193
authorization guidelines of, 194–197
general safety evaluations, 198–199
European Union
ACTIPAK, 143
active packaging and, 187–211
authorization guidelines in, 194–197
EMB/973 Rev. 5B, 193–194
general safety regulations, 198–199
genetically modified foods in, 173, 174
labeling in, 199–200
legislative restrictions in, 187
regulation in, 188–200
EVA. See Ethylene vinyl acetate (EVA) films
EVOH. See Ethylene-vinyl alcohol copolymer (EVOH)
Exports, 141–142
Extended shelf life (ESL), 22

Familiarity, 157–158
Far-field electric field backscattering, 125–126
Fears, consumer acceptance and, 171–174
Ferrous iron, 19, 205–206
Fong, D.K.H., 160–161
Food, Drug, and Cosmetic Act of 1958, 88
Food Additives Amendment to the Federal Food, Drug, and Cosmetic Act of 1958, 88
Food and Drug Administration (FDA), 38
bovine growth hormone and, 172
irradiation and, 88–89
nutrition facts labeling, 146
pre-market approvals by, 88–89, 92, 107–108, 110
safety certification by, 178
Food contact materials (FCMs), European regulations on, 193, 201–207
Food contact notification (FCN), 92
Food contact substances (FCSS), 92
Food packaging. See also individual types of packaging
acceptance of, 14
advantages and disadvantages of new, 15–16
consumer acceptance of, 14
customer choice and, 139–185
customer desires for, 141–142, 148–151
customer reactions to, 139
costs of, 141
current developments in, 140–143
decision parameters for, 159–166
designing, 14, 144–145
evaluating new materials for irradiation, 93–107
functions of, 144–148
gas transmission packaging and, 20
for high-pressure processing, 69–73
impact of information on, 147–148
influence of consumer choice in, 139–140
innovation in, benefits and risks of, 166–168
interactions with in nonthermal processing, 24–26
for irradiation, 74–78, 91–111
manufacturer vs. consumer desires in, 141–142, 148–151, 170–171
material characteristics and, 13–14
metal, RFID tags in, 136–137
multilayered, 30
for nonthermal processing, 11–13, 11–16
perceptions of, 144–148
pricing and, 146–147
for pulsed electric field processing, 80–82
regulation of, 14
roles of, 10–11, 140–143
survey of consumer reactions to, 174–179
traditional processing and, 11–12
U.S. food business and, 140–143
waste management in, 134
Food processing, functions of, 213–214
Food recalls, 135
Framing, 154–155
Free radicals, 75, 224
Frequency, radio, 121–122, 126–127
Fresh Express, 132
Frewer, L.J., 169, 173

Gains and losses, in decision-making, 155–156, 159
Gamma rays. See Irradiation
Garlic oil, 35
Generally recognized as safe (GRAS), 110
Genetically modified foods (GMOs), 172–174
Good irradiation practices (GIPs), 90
Good manufacturing practices (GMPs), 90
Government regulation. See Regulation
Grapefruit seed extract (GSE), 34, 37–38
Grunert, K.G., 169, 173

HACCP. See Hazard Analysis and Critical Control Point (HACCP)
Han, Jung H., 3–16, 117–137, 213–225
Hazard Analysis and Critical Control Point (HACCP), 135
Index

Headspace, 13
carbon dioxide control and, 20
gas composition assay, 45
high-pressure packaging and, 69, 223
testing new packaging materials and, 108
Health claims, 146, 215
Helium, critical temperature and pressure for, 61
Heuristic simplification, 152–159
High-pressure processing (HPP), 4, 6, 8
aseptic processing in, 12
barrier properties and, 70, 72
candidate foods for, 68–69
consumer attitudes toward, 177
delamination and, 71, 73
future of, 223
with MAP, 57, 59–61, 222
mechanical properties and, 70–71, 72
migration of flavor compounds and, 71, 72–73
overview of, 67–68
packaging for, 13, 69–73, 223
sealing for, 73
temperature in, 59–61
Hoyer, W.D., 169
HPP. See High-pressure processing (HPP)
Huang, C.-W., 164
Hurdle technologies, 26
Hydamaka, Arnold W., 117–137
Hydrogen, critical temperature and pressure
with, 61
Hydrostatic pressure processing, 15

Inductive coupling, 125–126
Inferences, consumer, 147–148
Information
consumer acceptance and, 169–171
impact of package, 147–148
influence of in decision-making, 163–164, 175–179
packaging as, 10, 145
too much, 148, 166
Inhibition zone test, 39, 40, 43
Innovation
bars to, 167–168
benefits and risks of, 166–168
consumer acceptance of, 168–169
consumer vs. processor view of, 170–171
ergy resources and, 215–216
marginal improvement vs., 166–167
Integrated circuits (ICs), 120–121
Integrated process design, 167
Intelligent packaging, 21–22

benefits of, 143
definition of, 18
in Europe, 188
migration in, 200–207, 206–207
IntelliPack, 20
Interactions, 24–26
International Organization for Standardization (ISO), 120
International Telecommunication Union (ITU), 126–127
Inventory control, 22
Involvement, 163–164
Ion chemistry, 109–110
Ionizing radiation, 22–23
challenges in, 23
moisture control and, 25
oxygen control and, 25
types of, 23
Irgalite Blue GBP, 106–107
Irradiation, 4
absorbent pads and, 105–106
adjuvants and, 95–97
alternative testing approaches for, 108–118
aseptic processing in, 12
barrier properties and, 75–77
chemical changes from, 89
colorants and, 106–107
customer attitudes toward, 176
dose in, 87, 92, 94
e-beam, 101–105
EVOH and, 94–95, 101–105
foods approved for, 89, 90
general aspects of, 89–91
ionizing radiation, 22–23
labeling and, 89
MAP and, 61–63, 78, 222
mechanical properties and, 76, 77
nylon 6I/6T and, 99–101
overview of, 87–88
packaging for, 12, 13, 74–78, 91–111, 223–224
packaging for, new material evaluation for, 93–107
plasticizers and, 96–97
polyethylene terephthalate and, 97–99
regulations for, 87, 88–89
safety of, 74, 88–89, 90–91
sources for, 74, 88–89
standards for, 90

Jeon, Dae Hoon, 96
Junkus, Joan C., 139–185
Index

Kawamura, Yoko, 96
Komolprasert, Vanee, 87–116, 97–99, 105, 106–107, 108
Krohta, John M., 29–52

Labeling
consumer perception of, 145–146
European regulation of, 199–200
of genetically modified foods, 173 informational, 3, 145–146
for irradiation, 89
mental accounting and, 156–159
smart, 128–129
Labuza, T.P., 170–171
Lactic acid bacteria (LAB), 55–57, 221
β-lactoglobulin, 46
Lactoperoxidase system in
in whey protein, 44
Lactoperoxidase system (LPOS), 35, 36
Lambert, Y., 73
Lee, B.-K., 148
Lee, W.-N., 148
Liechty, J.C., 160–161
Lipid coatings, 31, 33
Lipid oxidation, 78
Loveridge, Vicki A., 94–95
LPOS. See Lactoperoxidase system (LPOS)
Lysozyme, 30, 31, 34, 35, 36
diffusion coefficient for, 45, 46, 47

Magnetic coupling, 121–122, 125–126
Mahon, D., 171–172
MAP. See Modified atmosphere (MAP)
MAP/RO. See Modified atmosphere/reduced oxygen (MAP/RO) packaging
Marketing
brand extension and, 164–166
market structure and, 167–168
relationship, 161
Marque, D., 75
Massachusetts Institute of Technology (MIT), 127
Masuda, M., 73
Maximum temperature experience, 21
McNeal, T.P., 99–100
Mechanical properties
high-pressure processing and, 70–71, 72
irradiation and, 76, 77
Mental accounting, 156–159
Michalek, J.J., 167
Microfiltration, 12

Microorganisms. See also Antimicrobials;
Bacteriocins
activity measurement of, 39–45
aspetic processing and, 12
concerns of nonthermal processing and, 6, 9
health-benefit, 56
inoculation with antagonistic, 12
PEF and, 80
protective cultures of, 16
purge and, 19
resistance of, 9
target, selecting, 9
Microwaves, 121–122, 137
Middleware, 119–120
Migration, 11
European regulations on, 194, 201–207
from iron-based absorbers, 205–206
kinetics of, 220
modeling, 109
testing for, 203–207
of volatiles in HPP, 71, 72–73
Milch, Lauren E., 94–95
Min, Seacheol, 29–52, 67–86
Minimally processed foods (MPFs), 47–48, 53, 214
Modified atmosphere (MAP) packaging, 20–21, 53–65
antagonistic cultures and, 220–222
with biocontrol, 55–57
combining with other technologies, 221–222
consumer attitudes toward, 176–177
European regulation of, 200
future of, 220–222
with high-pressure processing, 222
irradiated, 61–63, 78
limits of, 54
overview of, 53–54
under pressure, 57, 59–61
traditional vs. new, 54–55
Modified atmosphere/reduced oxygen (MAP/RO) packaging, 26, 27
Mohr, L.A., 145
Moisture control
active packaging and, 18–19, 25, 143
MAP/RO and, 26
Monte Carlo N-Particle (MCNP) software, 109–110
MPPO testing, 206
Mukherjee, A., 169
Multiattribute attitude models, 169
Multidimensional scaling (MDS), 160
Multidimensional unfolding (MDU), 160
Index

Multilayered packaging
 edible films, 30
 irradiation and, 94–95
 Must-be qualities, 144

Near-field magnetic inductive coupling, 125–126
New product development (NPD), 141
 half-life time of, 167
Nisin, 34–35, 36, 38
Nitrogen, in modified atmosphere packaging,
 54–55, 61
Nitrosamine, 78
Nitrous oxide, critical temperature and pressure
 for, 61
Nonpumpable foods, 12
Nonthermal processing
 active packaging and, 17–28
 advantages and disadvantages of, 15–16
 aseptic processing in, 12
 characteristics of, 4–6
 combining, 9, 22
 concerns in, 6, 9–10
 definition of, 4, 22
 food interactions with, 11, 24–26
 future of, 213–225
 methods in, 7–8
 packaging for, 11–16
 research required on, 11
 technologies in, 22–24
Nordic Council of Ministers, 189
NPD. See New product development (NPD)
Nutrition, 141, 215
Nylon 6/6/7, 99–101

Observability, 168–169
Odors, 14, 143
OMF. See Oscillating magnetic field (OMF)
 processing
 One-dimensionality attributes, 144
 Oregano essential oils, 35
 Oscillating magnetic field (OMF) processing, 7
 Overchoice effects, 165–166
 Over-wrapping, 30
 Oxidation, interactions creating, 11
 Oxygen, critical temperature and pressure for, 61
 Oxygen control
 active packaging and, 19–20, 143
 consumer attitudes toward, 177
 future of, 28, 218
 gas transmission packaging and, 20
 intelligent packaging and, 22
 ionizing radiation and, 25
 MAP/RO and, 54–55
 oxygen generators and, 20

Packaging. See Food packaging; Nonthermal processing
 Paquette, Kristina E., 94
 Partition coefficient, 47
 Pasteurization, 4
 cold, 22–23
 conventional, 11–12
 low-temperature, 14
 Pediocin, 34, 36–37
 PEF. See Pulsed electric field (PEF) processing
 Percarbonates, 20
 Perceptions
 of genetically modified foods, 172–174
 of labeling, 145–146
 of quality, 144–148
 of risk, 171–174
 of safety/security, 171–174
 PET. See Polyethylene terephthalate (PET)
 pH, 6
 carbon dioxide control and, 20
 edible coatings and, 38
 MAP and, 55, 58
 Pharmaceutical industry, 130
 Plastizers, 96–97, 219
 Plate-counting method, 42, 44–45
 Polyethylene (PE)
 in high-pressure packaging, 69
 in irradiation, 75–77
 low-density, 73
 Polyethylene terephthalate (PET), 97–99, 121
 Polymers, 14, 75
 Polyolefins, 19, 94–95, 224
 Polypropylene, in high-pressure packaging, 69
 Polysaccharides, 30, 31, 32
 Potassium sorbate, 46
 Pre-market approvals, 88–89, 92, 107–108
 Preservatives, 143, 177
 Price-per-unit information, 146–147
 Pricing, 22, 146–147
 Prospect theory, 152–153, 159
 Protective cultures, 16
 Protein coatings, 31, 32–33
 Pulsed electric field (PEF) processing, 4–6, 8
 acceptance of, 142
 advantages/disadvantages of, 15
 aseptic processing in, 12
 Code of Federal Regulations on, 89
Pulsed electric field (PEF) processing (Continued)
commercial system for, 78–80
future of, 222
moisture control and, 25
objective of, 23
packaging for, 80–82
Pulsed light processing, 7
aseptic processing in, 12
objective of, 23
packaging materials for, 13
Pumpable foods, 12
Purge, 19

Quality
convenience vs., 149–150
expectation of, 162, 172
as goal of packaging, 10
impact of package information and, 147–148
of nonthermally processed foods, 14
perceptions of, 144–148
price and, 147

Radio frequency identification (RFID), 21, 27, 117–137
acceptance of, 142
applications for, 129–130
barcodes and, 128
combining with other technologies, 143
consumer attitudes toward, 177
disadvantages of, 133
efficiencies in, 142
EPC and, 127–130
for food industry, 131–137
food recalls and, 135
future of, 28, 133–134, 216
obstacles to applications of, 131
overview of, 117
protocols for, 120
reader-tag communication in, 124–127
resource management systems, 131–132
safety and, 117, 135–137
software for, 119–120
supply chain management, 134–135
system architecture, 118, 119–120
system components, 117, 118–120
transponders in, 120–124
trends in, 132–134
Radiolysis products (RPs), 88, 224
factors in formation of, 94
new packaging material testing and, 108
Randomness, 158

Reactants, active packaging and, 143
Readers, RFID, 117, 118, 119
communication between tags and, 124–127
Reader talks first (RTF) protocols, 120
Recalls, 135
Reference points, 153–155, 159
Regulation, 9
of active packaging in Europe, 188–200
of antimicrobials, 21
of edible coatings, 38
of frequency allocation, 126–127
of irradiation, 74, 87–88, 88–89, 92–93
of labeling, 173
Relationship marketing, 161
Relative advantage, 168–169
Releasing materials, 196–197, 203–204
Representativeness, 157–158
Reservation prices, 147
Reverse qualities, 144–145
RFID. See Radio frequency identification (RFID)
Rijk, M.A.H., 187–211
Risk, 168–169, 171–172
RPs. See Radiolysis products (RPs)
Sadler, G. D., 109–110
Safety/security
assessment of new packaging materials for, 107–108
consumer desire for, 149
European regulations on, 198–199
FDA certification of, 178
frozen foods and, 150
of irradiation, 74, 88–89, 90–91
perceptions of, 171–174
RFID and, 117, 135–137
as role of packaging, 11
tampering and, 136
Sandwich method of testing, 205–206
SAR. See Structure–activity analysis (SAR)
Savant software, 119–120
Scavengers, 19–20, 203
ferrous iron, 19
ionizing radiation and, 25
organic, 19
Scientific Committee of Food (SCF), 196
Screening, 161–163
Sealants, 14
Sea Smoke Cellars, 133
Secondary effects, 24
Selective memory, 155
Index 235

Shelf life, 22, 53–65, 81
Shelf positioning, 144
Sherlock, M., 170–171
Shrink-wrapping, 30
Signal collision, 120
Silicon dioxide, 69
Simulation modeling, 109
Smart labels, 128–129
Spaulding, M., 149
Spencer, Kevin C., 139–185
Spores, 4, 6, 68
Stabilizers, 93
Status quo bias, 153–155
Sterilization, 4
Stockkeeping units (SKUs), 131–132
Stoffers, Niels H., 95–96
Structure–activity analysis (SAR), 110
Styrene, 107
Supply chain management, 134–135

Tags. See Radio frequency identification (RFID); Transponders
Tag talks first (TTF) protocols, 120
Tampering, 136, 149
Tanirnura and Anthe Inc., 132
Tauscher, B., 7–8
Temperature
 critical, in MAP with HPP, 59–61
 edible coatings and, 38
 in high-pressure processing, 67–68
 MAP and, 221
Testing protocols, 107–108
Thermal death time (F), 11–12
Thermoformed containers, 81–82
Thermoforming, 30
Thickness effects, 68
Threshold of regulation (TOR) exemption, 92
Time-temperature indicators (TTIs), 143, 170–171
 European regulation of, 206–207
Time/temperature integrators, 21, 27
Tocopherol, 19
Traceability, 135
Transponders, 117, 118–119
 antenna orientation in, 126
 classes of, 123–124
 frequency of, 121–122
 in metal packaging, 136–137
 passive vs. active, 120, 122–123
 reader communication with, 124–127
 semipassive, 123
 signal collision and, 120
 structure of, 120–121
 Trialability, 168–169
 Trust, 165
 TTI. See Time-temperature indicators (TTIs)
 Twaroski, Michelle L., 107
 Ultra-high pressure (UHP) processing, 23
 acceptance of, 142
 future of, 27
 moisture control and, 25
 oxygen control and, 25
 quality and, 24
 Ultrasound processing, 7, 23
 Ultraviolet (UV) light processing, 7
 Code of Federal Regulations on, 89
 packaging materials for, 13
 resistant bacteria and, 9
 Universal Product Codes (UPCs), 127, 128–129
 University of Zurich, 134
 U.S. Department of Defense, 131
 UV processing. See Ultraviolet (UV) light processing
 Value, 152–153, 156
 Van Dongen, W.D., 187–211
 Variety-seeking, 157–158
 Vendor–buyer relationship, 161
 Vitamin loss, 74
 Volatiles
 irradiation and formation of, 76, 77, 101–105
 migration of, 71, 72–73
 Wal-Mart, 131–132
 Warehousing operating systems, 132
 Waste management, 134
 Weight control, 141
 Wells’ Dairy, 133
 Whey protein films, 30, 31, 32–33, 44
 World Health Organization (WHO), 91
 X-rays. See Irradiation
 Xtenda Pak, 19
 Yuan, James T. C., 53–65
 Zong, Yicheng, 117–137
 Zygoura, P.D., 96–97