INDEX

D-pseudo bosons
nonlinear, 183
regular, 129

D-pseudo-bosons, 126

PT-symmetry, 2, 9, 11, 13, 15, 18, 19, 21, 23, 33, 35, 38, 39, 48, 257, 273, 278, 280, 287, 345
scattering, 39
spontaneous breakdown, 26, 49

q-oscillator, 106

$\pi\pi$ space (partial inner product space), 382, 393
indexed, 394
LBS, 394
LHS, 394

accretive operator, 251
adjoint form, 258
adjoint operator, 9, 244, 262, 282
Airy operator, 252, 255–257, 263, 267, 284
algebraic eigenspace, 246
algebraic multiplicity, 22, 246, 267, 271, 274, 279
analytic model, 86
anihilation operator, 245, 248, 275
antilinear operator, 11, 254
antiniary operator, 254, 257
approximate eigenvalue, 282

basis, 123
D-quasi, 131, 145, 159, 171, 174
C-quasi, 129, 184
biorthonormal, 32, 170, 181
Riesz, 130
biothornormal, 32
othernormal, 123
quasi, 162, 178
basis (Schauder or conditional), 278
Bopp shift, 153
Bose-Einstein condensation, 17
bounded form, 258
bounded operator, 29–31, 42, 243

CAR
canonical anticommutation relations, 174
deformed, 174
causality, 39

CCR
canonical commutation relations, 129, 145
deformed, 126
Charlier
polynomial, 81
sequence, 81

Edited by Fabio Bagarello, Jean-Pierre Gazeau, Franciszek Hugon Szafraniec and Miloslav Znojil.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
closable form, 260
closable operator, 260
closed form, 259, 265
closed operator, 244, 264
closure of a form, 260
coercive form, 258
cohrent states
duality, 104
 Horzela-Sações approach, 103
commutation relation, 88
 (CCR), 88
 quantum harmonic oscillator, 88, 90
commutativity, 256
compact operator, 266
compact resolvent, 267–269, 279
complete set, 278
complex symmetric operator, 255
complex-self-adjoint operator, 254, 257, 262, 271
condition number, 276, 283
continuous operator, 243
correspondence principle, 8, 34, 37, 43, 49
creation operator, 245, 248, 275
cubic oscillator, 12, 19, 32, 45, 252, 255–257, 263, 268, 285, 346
damped wave equation, 252, 253, 264
Davies’ oscillator, 276, 286
decomposition
 Cartesian, 69
 Zaremba, 79, 81, 82, 87
deficiency, 243
degenerate eigenvalue, 246
densely defined form, 258
densely defined operator, 243
dilation, 64
 Julia, 66
 Nàmark, 68
Dirac potential, 260, 265, 269, 281, 287
Dirichlet Laplacian, 245, 248, 251–254, 261, 268, 278, 280
domain of a form, 258
domain of an operator, 243
duality, 101
eigenvalue, 246, 351, 361
eigenvector, 32, 246, 279
exceptional points, 16, 17, 22, 24, 47–49, 185
extension, 64, 243, 258
 *-tight, 111
 Friedrichs, 260
 minimal of cyclic type, 77
 minimal of spectral type, 73
 Nàmark, 68
 selfadjoint, 69
tight, 111
 uniqueness, 77
 von Neumann, 68
Fock, 85
form-domain, 259, 260
formal adjoint, 253
Fredholm operator, 270
free Hamiltonian, 245, 248, 253, 254
gauged oscillator, 275, 286
generalized eigensystem, 279
generalized eigenvector, 246
geometric eigenspace, 246
geometric multiplicity, 22, 246, 271, 274, 279
graph topology, 61
Green’s function, 268
Harmonic Oscillator
two-dimensional, 169
harmonic oscillator, 27, 28, 245, 248, 251, 263, 264, 269, 281, 287
extended, 158
non self-adjoint, 21, 22
shifted, 145
 non-self-adjoint, 148, 150
 self-adjoint, 147
two-dimensional, 152
Hermite
 function, 85
 polynomial, 84
Higgs boson, 7
Hilbert space, 8, 11, 12, 15, 17, 21, 25, 29, 30, 243
Hilbert-space metric, 14, 15, 29, 31–33, 35, 39, 41, 43, 44
 ambiguity, 12
 non-locality, 13
Ichinose’s lemma, 272
identity operator, 32, 243
imaginary part of a form, 258
indefinite inner product, 256
inner product, 12, 31, 35, 36, 43, 243, 258, 276
interactions
 nearest-neighbor, 40
 non-local, 16, 37, 39
involutive operator, 255
isolated eigenvalue, 267
Kato’s theorem, 262
kernel, 243
Klein-Gordon equation, 16
Krein space, 16, 18, 30, 49, 256, 348
Laplacian, 245
lasers, 16, 17, 48, 49
lattice of Banach spaces (LBS), 394
lattice of Hilbert spaces (LHS), 363, 364, 380, 394
levels
Landau, 163
linear operator, 243
m-accretive operator, 251, 262
m-sectorial operator, 251, 259
maximal operator, 251
measure
POVM, 68
semispectral, 68
spectral, 68
methods
discretization, 39, 41
Feshbach’s, 8, 13, 25, 26
metric operator, 15, 17, 276
see Hilbert-space metric, 31
models
coupled channels, 49
non-quantum, 48
optical, 14, 16, 48
momentum operator, 244, 248, 250, 251, 253, 254, 257
multiplication operator, 244, 248, 253, 259
Neumann Laplacian, 245, 248, 251, 253, 254, 260, 266, 268, 278
noncommutative
model, 171
space, 152, 187
nonnegative form, 258
nonnegative operator, 253
norm, 243
normal operator, 254, 279, 282, 283
normally soluble operator, 270
nullity, 243
numerical range, 249, 258, 282
open quantum systems, 47
operator, 60
- cyclic, 71
“Hermitian adjoint”, 62
“non-Hermitian”, 114
adjoint, 30, 61
annihilation, 92
closable, 61
closed, 61
closure, 61
core, 67
creation, 92
cyclic, 76
defined from Riesz basis, 377
displacement, 146
domain, 60
essential self-adjoint, 68
essentially normal, 69
formal adjoint, 113
formally normal, 69
Friedrichs extension, 131, 143
intertwining, 137
bounded, 349
unbounded, 359
lowering, 173, 177
metric, 122, 133, 136, 145, 152, 158, 162, 171, 174, 347, 363, 364, 380, 389
bounded, 365
LHS generated by , 380
unbounded, 365
multiplication, 80
mutually quasi-similar, 354
normal, 69
null space, 61
number, 146, 150, 153, 168, 177, 178
on pip space, 382, 395
adjoint, 396
homomorphism, 397
orthogonal projection, 398
regular, 397
symmetric, 384, 396
part, 64
positive, 130, 131
pseudo-Hermitian, 346, 348
quasi-Hermitian, 30, 348, 367
bounded, 371
unbounded, 371
quasi-self-adjoint, 373
quasi-similar, 353, 359
raising, 171, 173, 177
range, 61
restriction, 63
selfadjoint, 68
semibounded, 131
semisimilar, 387
similar, 350, 382
spectral of scalar type, 372, 376
subnormal, 73
symmetric, 68
unbounded, 17, 29, 31, 43, 60
weakly quasi-similar, 355
operator associated with a form, 259
operators
Θ-conjugate, 134–137, 141–144, 151, 157, 162, 169
INDEX

orthogonal complement, 243
orthonormal basis, 279
parity operator, 10, 255, 257
phase transitions, 26, 29, 47–49
point interactions, 15
Poisson bracket, 283
polynomial
 Hermite, 147, 160
 Laguerre, 22, 169
 Legendre, 160
Pontriagin space, 49
position operator, 40, 244
positive definite, 109
 and commutation relation, 91
kernel, 79
pseudo-Hermitian Hamiltonian, 17, 389
pseudo-self-adjoint operator, 255, 257, 276
pseudo-eigenfunction, 282
pseudo-eigenvalue, 282
pseudo-eigenvector, 282
pseudomode, 282
pseudospectrum, 18, 281
\(\mathcal{PT} \)-symmetric square well, 280, 287
\(\mathcal{PT} \)-symmetric waveguide, 273, 278
\(\mathcal{PT} \)-symmetry, 257
quadratic form, 258
quantum brachistochrone, 16, 25
quantum catastrophes, 17, 25
quantum graphs, 17
quantum horizon, 16, 24, 26
quantum theory
 atomic nuclei, 34, 46, 48
quantum toboggans, 21
quasi-acc cretive operator, 251
quasi-m-acc cretive operator, 251
quasi-self-adjoint operator, 276, 277
quasiparity, 13, 22, 28
range, 243
real part of a form, 258
relation
 intertwining, 133, 169, 176, 178, 183
 lowering, 127
 raising, 127
relative bound, 263, 264
relative boundedness, 263, 264
representation theorem, 259
representations of observables
 crypto-Hermitian, 36, 41
 pseudo-Hermitian, 17
reproducing kernel, 78
 couple, 78
formula, 78
Hilbert space, 78
integrability, 87
resolution of the identity, 32, 128, 129, 150, 151, 181
resolvent, 246, 277
resolvent set, 246, 270
resonances, 14, 26, 47
restriction, 243, 258
Riesz basis, 128, 129, 279, 280
Robin Laplacian, 245, 249, 251, 253, 257, 266, 268, 273, 277
Roch-Silberman theorem, 282
root eigenspace, 246
root vector, 246, 279
rotated oscillator, 276, 286
Schrödinger operator, 262
sectorial form, 258
sectorial operator, 250
Segal-Bargmann model, 93
 space, 85, 101
 transform, 82, 85
self-adjoint operator, 253, 271, 276, 277, 279, 282
semi-Fredholm operator, 270
semiangle, 250, 258
semiclassical operator, 283
semiclassical pseudomode, 284
semiclassical pseudospectrum, 283
sesquilinear form, 258
set
 complete (or total), 124, 128, 131, 147, 150
sets
 biorthogonal, 124, 128, 129, 150, 158, 177, 183, 184
 of eigenstates, 128, 148
shift operator, 256, 271, 286
shifted oscillator, 264, 268, 269, 286
similarity transform, 30, 274, 276, 277, 279, 283
space-reversal operator, 255, 257
spectral instability, 282
spectrum, 67, 246, 350, 351
 continuous, 247, 253
 creation and annihilation, 93
 discrete, 267, 269
 essential, 269, 270, 272
 parts, 67
 point, 246, 267, 356, 361, 386, 387
 real, 253, 254, 268, 273, 279, 352, 372
 residual, 247, 253, 254, 277
 stability of closedness, 264, 265
 subordination, 263, 265, 280
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>subspace</td>
<td>63</td>
</tr>
<tr>
<td>reducing</td>
<td>8, 63, 64</td>
</tr>
<tr>
<td>Supersymmetry</td>
<td>27, 38</td>
</tr>
<tr>
<td>Swanson’s oscillator</td>
<td>159, 275, 286</td>
</tr>
<tr>
<td>symbol (of a semiclassical operator)</td>
<td>283</td>
</tr>
<tr>
<td>symmetric form</td>
<td>258</td>
</tr>
<tr>
<td>symmetric operator</td>
<td>253</td>
</tr>
<tr>
<td>symmetry</td>
<td>18, 257, 282</td>
</tr>
<tr>
<td>theorem</td>
<td></td>
</tr>
<tr>
<td>best approximation</td>
<td>124, 125, 133</td>
</tr>
<tr>
<td>KLMN</td>
<td>384</td>
</tr>
<tr>
<td>pip space version</td>
<td>385, 386, 397</td>
</tr>
<tr>
<td>of Rellich–Dixmier type for the harmonic oscillator</td>
<td>98</td>
</tr>
<tr>
<td>Rellich-Dixmier</td>
<td>89</td>
</tr>
<tr>
<td>spectral</td>
<td>70, 131</td>
</tr>
<tr>
<td>for *-cyclic operators</td>
<td>71</td>
</tr>
<tr>
<td>three-Hilbert-space formalism</td>
<td>12, 16, 29, 34, 35</td>
</tr>
<tr>
<td>time-reversal operator</td>
<td>10, 255, 257, 262</td>
</tr>
<tr>
<td>two-Hilbert space formalism</td>
<td>367</td>
</tr>
<tr>
<td>unbounded operator</td>
<td>17, 29, 31, 43</td>
</tr>
<tr>
<td>unitary operator</td>
<td>254, 257, 274, 284</td>
</tr>
<tr>
<td>vector</td>
<td>62</td>
</tr>
<tr>
<td>C^∞</td>
<td>62</td>
</tr>
<tr>
<td>analytic</td>
<td>62</td>
</tr>
<tr>
<td>bounded</td>
<td>62</td>
</tr>
<tr>
<td>entire</td>
<td>62</td>
</tr>
<tr>
<td>quasianalytic</td>
<td>62</td>
</tr>
<tr>
<td>vertex</td>
<td>250, 258</td>
</tr>
<tr>
<td>weighted shift</td>
<td>71</td>
</tr>
<tr>
<td>Weyl’s criterion</td>
<td>272</td>
</tr>
<tr>
<td>Weyl’s theorem</td>
<td>272</td>
</tr>
<tr>
<td>Wheeler-De-Witt equation</td>
<td>33</td>
</tr>
</tbody>
</table>