INDEX

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

absorption, distribution, metabolism, and elimination (ADME)
age
 blood and tissue PK, 23
enzyme systems, rate of maturation, 23–4
excretory systems immaturity, 25
maturity and senescence, 23
neonates, 23–4
in xenobiotic metabolism, 24
body composition, 25
drug exposure, 21
gender, 21–2
heritable traits/breeds, 28–9
PK response, human food safety effects, 12
pregnancy and lactation depletion time determination, 26
disease/stress, 27–8
gentamicin, kinetic disposition, 26
plasma clearance, 26
acceptable daily intake (ADI)
antimicrobial drugs, 36
and safe concentration calculations, 37, 38
and toxicity profile, 54
toxicological, pharmacological/microbiological data, 53
acceptable single-dose intake (ASDI), 46
ADI *see* acceptable daily intake (ADI)
ADME *see* absorption, distribution, metabolism, and elimination (ADME)
Agricultural Research, Extension, and Education Reform Act (AREEA), 292
American College of Veterinary Internal medicine (ACVIM), 124–5

Edited by Ronald E. Baynes and Jim E. Riviere.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
aminoglycosides
 beta-lactams, 144
 French cattle veterinarians, 145
genatmicine sulphate, 225
 livestock species, 225
AMRA survey see Australian milk residue analysis (AMRA) survey
Animal Medicinal Drug Use Clarification Act (AMDUCA), 3–5, 122, 126, 210, 227, 292, 295
anti-infective agents
 extralabel drug, 121–2
 pharmacotherapeutics, 119
 therapeutics, 120–121
antimicrobial drugs
 disease prevalence, 123–4
 National Cattlemen’s Beef Association, 122, 123
 resistance, 124–5
antimicrobial-free beef products, 134
aquaculture production systems and chemicals, 161
drug use
 acceptable residue levels, 168
 antibiotics, 169
 antimicrobial use, 170
 antiparasitics and antifungals, 170–171
 chloramphenicol, 170
 continued monitoring programs, 171
 drug approval process, 168–9
 global organizations, 167, 168
 terrestrial medicine, 170
 veterinary drugs, 167
environmental contaminants
 brominated flame retardants, 164
 deepwater horizon oil spill, 163
 feeds, 166
 fish oils, 164
 groundwater, 162
 mercury accumulation, 165
 metals accumulation, 165
 nanotechnology, 166
 organic pollutant, 163
 organochlorine pesticides, 164
 POPs, 163
 PPCPs, 166
 terrestrial pesticide, 165
 waterborne pollutants, 162
 land-based farms, 162
 melamine adulteration, 171–4
 production systems, 161–2
AREEA see Agricultural Research, Extension, and Education Reform Act (AREEA)
ASDI see acceptable single-dose intake (ASDI)
Australian milk residue analysis (AMRA) survey, 151
beef cattle production systems
 animal identification, 127, 127
 animal records, 127, 128
 anti-infective agents, 119–22
 antimicrobial drugs, 122–5
 chronic disease, 127–8
 common infectious diseases, 118–19, 119
 disease challenges, 116, 117
 feeding cattle, 116, 117
 injection site lesions, 131, 131, 132
 labels, 126
 nondrug residues, 131–2
 nursing calves, 116
 parasiticides, 125
 quality assurance programs, 133, 133–4
 residue avoidance, 125–32
 screening, 128, 129–130
 training, 127
 United States, 115
 USDA-FSIS Red Books, 115
 veterinary involvement, 125
 weaned calf, 116
 withdrawal times, 126, 126
Center for Veterinary Medicine (CVM), 9, 35
chemical contaminants, livestock contaminants, 303
description, 303–4
dioxins, 305
heptachlor, 304–5
melamine (ME) see melamine (ME)
radioactive contamination
and management
by-products, fracking see “fracking” operations
Ca–DTPA
(diethylenetriaminepentaacetate), 309
curies and becquerels, 308
fallout exposures, food-producing animals, 309
Japanese incident, radionuclides, 308
milk, postcrisis contamination areas, 310
nonexposed grazing animals, 309
therapeutic compounds, 310
tsunami-contaminated debris, 308
WDT after radionuclide exposure, 308
clenbuterol intoxication, 5
Committee for Medicinal Products for Veterinary Use (CVMP), 50
covariate analysis, 86–7, 87
dairy cattle production systems
meat and milk see meat and milk prevalence
AMRA survey, 151
drug residue data, 149, 150
European commission, 149, 151
European Medicines Agency (EMEA), 149
FAST, 149
FDA, 147
Food, Drug and Cosmetic Act, 147
FSIS, 148
milk samples tested, United States, 147, 148
PMO, 147
veterinary residues committee (VRC), 149
prophylactic drugs, 137–40
therapeutic drug, 140–6
dioxins, 234, 305
drug depletion, pharmacokinetics see also absorption, distribution, metabolism, and elimination (ADME)
absorption rate, 16–17
active pharmaceutical ingredients (API), 9
approved drugs uses, 10
bioavailability, 12
drug elimination, 15
drug exposure, 12
first-order elimination, 15
Guidance for Industry (GFI), 9
hepatic disposition, 17
human food safety concern, 10
in vivo drug behavior, 11
intermediate-extraction drugs, 18
intrinsic and extrinsic factors, 10–11
intrinsic hepatic clearance, 19
Michaelis–Menten process, 19
multi-compartmental model, 15
one-compartment body model, 15
PK principles, 20
renal clearance, 19
risk assessment principles, 10
steady state, 13–14
tissue binding, 13–14
tolerances, 10
total residue evaluation, 11
two-compartment body model, 15–16, 16
violative drug residues, 10
volume of distribution (Vd), 13–14
drug residue depletion, edible products
antimicrobial products, 36
Center for Veterinary Medicine (CVM), 35
milk discard times determination see milk discard times determination
risk assessment principles, 36
total residues see residue safety standards
xenobiotics and endogenous compounds, 36
European Public MRL Assessment Report (EPMAR), 56
FARAD *see* Food Animal Residue Avoidance and Depletion (FARAD) program

FAST *see* fast antimicrobial screen test (FAST)

fast antimicrobial screen test (FAST), 149

feed additives, EU policy and legislation, 59–60

food animal products and feed multiresidue confirmatory methods

- LC-MS/MS-based, 268–70
- LC-QIT MS-based, 271–3
- LC-(Q)-TOF-based, 273–4
- orbitrap-based, 275–6

"performance characteristic curve", 268

selected examples, LC-MS-based confirmatory methods, 259, 260–267

unit resolution MS/MS and HRMS¹, 276–7

Food Animal Residue Avoidance and Depletion (FARAD) program

AMDUCA, 292

AREEA, 292
description, 290
drug and chemical database, 156

expert-mediated consultations
description, 295
residue-related inquiries, agent/drug class, 296, 298
stakeholders, 299
submission statistics, species, 296, 297

Web portal, residue-related questions submission, 296, 297

Global FARAD (gFARAD), 300

home page, website, 290, 291
regulatory drug information
human consumption, 293

mandatory waiting period/WDT, 293–4
new animal drug application (NADA), 293

No Observable Effect Level (NOEL), 293

VetGRAM *see* Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)

requirements, veterinarians, 292

sheep and goats, 195, 196

WDI Lookup Tool, 299, 300

Food, Drug and Cosmetic Act, 147, 234

food safety and inspection service (FSIS), 148, 201, 210, 227, 228

Food Safety Modernization Act (FSMA), 290

Food Standards Australian and New Zealand Food Authority (FSANZ), 205

“fracking” operations
description, 310–311

proprietary additives, 311

FSANZ *see* Food Standards Australian and New Zealand Food Authority (FSANZ)

FSIS *see* food safety and inspection service (FSIS)

FSMA *see* Food Safety Modernization Act (FSMA)

“generally recognized as safe” (GRAS), 3

Gentamicin Piglet Injection, 225

Gentocin®, Pig Pump Oral Solution, 225

Global FARAD (gFARAD)

program, 300

hepatic metabolic processes, 17–18

heptachlor (chlorinated hydrocarbon insecticide)

FARAD, 304–5

industrial ethanol plant, 304–5

pineapple growers and Hawaiian milk supply, 304

“human food safety evaluation”

see drug residue depletion, edible products

injection site residue reference value (ISRRRV), 55, 72
LC-MS/MS-based multiresidue confirmatory methods
advantages, 268
EC Reference Laboratory, 269
matrix-matched calibration curves, 269
milk samples, 269
QuEChERS-type extraction procedure, 270
LC-QIT MS-based multiresidue confirmatory methods
banned chemical substances, 272–3
description, 271
finfish species, 273
targeted drug classes, sulfonamides, 271–2
“Find by Formula” algorithm, 274
target analytes confirmation, 274
livestock commodities
advantages, HRMS, 255
“analyte-specific” RT, 243
biological matrices, 235
chemical databases, 259
confirmation and identification, 238
certification analysis, 236
decision limit (CC_\alpha) and detection capacity (CC_\beta), 251–2
dual-stage HRMS, 242–3
essential elements, confirmatory methods, 248, 249
extraction and cleanup techniques, 245
food animal products and feed see food animal products and feed
food safety and veterinary drug use, 234
foods program key validation parameter requirements, 251, 252
GC-MS-/LC-MS-based methods, 257, 258
GFI-118, 250
HILIC-TOF MS system, 256
immunoaffinity cartridges/molecularly imprinted polymers, 245
IP assignment, MS-derived signal, 253, 254
IPs number, techniques and combinations, 253, 255
LC/GC, 237–8
LC-MS/MS, 239
malachite green and nitrofurans, 234
mass spectrometry (MS), 238
Mathieu Equation, 240
maximum permitted tolerances, MS, 253, 255
MS type and acquisition modes, CVM GFI-118, 250, 251
“novel”/“wonder” drugs, 239
orbitrap MS, 242
organic residues/contaminants, 253, 254
organic substances, 239
parameters, qualitative methods, 236, 237
“performance characteristic curve”, 237
probability, erroneous spectral assignment, 256
production, food animals, 233
QC requirements, 250
QqQ MS, 241
random error and nonrandom bias, 246
reconstituted ion chromatograph (RIC), 247
regulatory method development, validation and routine use, 247, 247
regulatory methods, residue analysis, 235, 236
residue monitoring program, FDA, 235
semiquantitative threshold criteria, 257
single-stage (HRMS), 241
soft ionization sources, 244
specialized LC system, 244
spectrometers, 240
system suitability and ruggedness testing, 248
targeted analysis, 239
livestock commodities (cont’d)
 TOF analyzer, 241–2
 validation, regulatory method, 248
 veterinary drugs, 233
 zero and nonzero tolerance, 234–5

marker residue depletion study
 animal husbandry, 44
 animals species, class, gender,
 and maturity, 43–4
 concomitant administration, drugs, 44
 dose and administration, 44
 drug products, persistent residues
 at injection site, 46–7
 large molecule products, withdrawal
 period assignment, 47
 milk discard times determination, 42–3
 number of animals, 44
 “research tolerance”, 46
 sampling time intervals, 44–5
 tissue sample analysis
 and data report, 45
 withdrawal time calculation, 45–6
 mastitis–metritis–agalactia (MMA)
 syndrome, 227

maximum residue limits (MRLs)
 and CVMP, 50
 definition, 49–50
 EU policy, minor uses and minor
 species (MUMS), 59
 extrapolation, 57–8, 58
 feed additives, EU policy and
 legislation, 59–60
 food commodities, 51–2
 marketing authorizations, 52
 off-label use, 60–61
 pharmacologically active substances
 classification, 50–51
 prohibited drugs
 Aristolochia spp
 and preparations, 58
 estradiol, 58
 growth promoters, 58
 scientific evaluation
 ADI, toxicological data, 53
 data requirements, 52–3

European Public MRL Assessment
 Report (EPMAR), 56
 injection site residue reference
 value (ISRRV), 55
 marker residue, 54
 microbiological ADI, 53
 in milk/eggs, 56
 nonradiolabeled (“cold”) marker
 residue study, 54
 no-observable-adverse effect- level
 (NOAEL), 53
 Official Journal of the European
 Union, 56
 pharmacological effects, 53
 residues, levels of consumption, 55
 “Summary Report”, 56
 target tissues, ADI division,
 54, 54
 theoretical maximum daily intake
 (TMDI), 55–6
 Veterinary Medicinal Products
 (VICH), 53
 substances list and classifications, 52
 transition period, 52
 veterinary medicinal products, 50
 withdrawal period, 50

meat and milk
 drug residues, dairy industry, 151
 FARAD, 156
 “on-farm” antibiotic screening
 assays, 156
 quality assurance program
 administer drugs, 154
 employee/family
 awareness, 154–5
 FDA-approved drugs, 153
 management program, 153–4
 practice healthy herd
 management, 152–3
 prevention protocol, 155
 screening tests, 154
 treatment records, 154, 155
 valid veterinarian/client/patient
 relationship (VCPR), 153
 survey, 152
 therapeutic drug use, 151–2
melamine (ME)
adulteration
center for veterinary medicine (CVM), 172–3
clinical disease, 172–3
contamination pet food and milk products, 172
global market, 174
Kjeldahl reaction, 173–4
nephrotoxicity, 172
shrimp feeds, 173
s-triazines, 171–2
description, 305
limit of detection (LOD), 306
pet food recall, US, 305–6
pharmacokinetic (PBPK) model, 307
plasma concentration-time profiles, 307, 307
rats and swine
center concentration–time curves, edible tissues, 109, 110
contamination, pet food, 108
feed supply, 108
human health risk assessment, 108
plasma concentration–time simulation, 109, 110
urine data and plasma data, 109, 109
withdrawal intervals, 110–111
triazines, 306
milk discard times determination
drug metabolism, 41
marker residue depletion study, 39, 42–3
metabolism and comparative metabolism studies, 41–2
practical zero withdrawal, 41
target tissue, marker residue and tolerance determination, 39, 42
tolerance, 39–40
total residue depletion study, 40–41
milk withdrawal time, 6
MMA see mastitis–metritis–agalactia (MMA) syndrome
MRLs see maximum residue limits (MRLs)
National Residue Survey (NRS), 205–6
New Zealand Food Safety Authority (NZFSA), 206
NOEL see No Observable Effect Level (NOEL)
nonsteroidal anti-inflammatory drugs (NSAIDs)
Flunixin meglumine (Banamine), 226
Meloxicam (Metacam®, Boehringer Ingelheim), 227
pharmacogenomic studies, 226
in United States, 227
no-observable-adverse effect-level (NOAEL), 53
No Observable Effect Level (NOEL), 293
NRS see National Residue Survey (NRS)
NSAIDs see nonsteroidal anti-inflammatory drugs (NSAIDs)
NZFSA see New Zealand Food Safety Authority (NZFSA)
orbitrap-based multiresidue confirmatory methods
drawbacks, 275
QuEChERS-type extraction procedure, 275–6
UPLC-Orbitrap, 275
pasteurized milk ordinance (PMO), 147
PBPK see physiologically based pharmacokinetic (PBPK) modeling
persistent organic pollutants (POPs), 163
pharmaceuticals and personal-care products (PPCPs), 166
physiologically based pharmacokinetic (PBPK) modeling
and classical compartmental analysis, 95, 96
in vivo studies, 96
melamine see melamine, rats and swine
model development and validation Bayesian analysis, 104
calibration techniques, 101
physiologically based pharmacokinetic (PBPK) modeling (cont’d)
classical statistical method, 103
complicated model, 98, 98
cross-validation techniques, 104
food residue avoidance, 98, 99
mass balance equations, 99–100, 101
Michaelis–Menten enzyme, 99–100
Monte Carlo simulation, 103
parameters, 100
relative changes, plasma concentration, 102, 102
simplified models, 97, 97
tissue compartments, 99, 100
visual inspection, simulation, 103, 103
software programs, 96
sulfamethazine, swine see sulfamethazine
tissue drug concentration, 111
U.S. Environmental Protection Agency (US-EPA), 96–7
US-FARAD, 97
PMO see pasteurized milk ordinance (PMO)
POPs see persistent organic pollutants (POPs)
population pharmacokinetic (PK) model
benefits, 88
covariate analysis, 86–7, 87
limitations, 88–9
preslaughter withdrawal times see preslaughter withdrawal times
sick animal PK parameters, 89
U.S. tolerance limit detection, 90
veterinary medicine, 90
PPCPs see pharmaceuticals and personal-care products (PPCPs)
preslaughter withdrawal times
calculation, 82
D-optimal design, 83
elimination profile, 82, 83
intraindividual error, 84, 86
non-linear mixed effects approach, 83
predicted concentrations vs. time, 84, 85
statistical programs, 84
steady state plasma concentrations, 82, 83
prophylactic drugs
dairy cattle
anthelmintics, 139–40
antibiotics, 137–8
dry-cow therapy, 138–9
ionophores, 140
milk replacers, 139
oral antibiotics, 139
sheep and goat
American animal health institute, 196–7
commonly used drugs, 197, 197
feedlot, 198
H. contortus, 197–8
U.S. FDA issues, 198
quality assurance programs
AMDUCA, 4–5
anthelmintic resistance, 213–14
avoiding drug residues, 212, 213
Canadian food inspection agency, 211
catastrophic drug residue, 4
consumers, 4
extralabel drug use, 211
food-producing industries, 211–12
livestock producers, steps for, 4
measurement, control drug residues, 214–15
responsible use of medicines agriculture alliance (RUMA), 212–13
SSQA, 212
training programs, 212
Web-based training and certification programs, 212
“research tolerance”, 46, 47
residue avoidance, production systems
aquaculture see aquaculture production systems
beef cattle see beef cattle production systems
dairy cattle see dairy cattle production systems
sheep and goat see sheep and goat production systems
swine see swine production systems
residue safety standards
ADI value, 36
allowable incremental increase limits, 36
endogenous substance, 38
exposure evaluation and mitigation, 38–9
human food safety concerns, 37
safe concentrations calculation and ADI partition, 37

safe concentration from linear regression (SCLR), 73, 74
safe concentration per milking (SCPM), 73, 74

sheep and goat production systems economic significance, 194
“extralabel”/“off-label”, 194–5, 210
FARAD, 195, 196

Gastrointestinal (GI) parasitism, 195
health management
and promotion, 208–9
legislative efforts, 209–10
“major” and “minor” species, 193–4
mandated residue monitoring, 210
parasites, 195

prevalence
Australian residue samplings, 206, 206–7
European communities issues, 204–5
Food Standards Australia and New Zealand Food Authority (FSANZ), 205
β-lactams and sulfonamides, 208
lamb liver sample, 202, 203, 204
meat consumption, 201, 202
microbial inhibitor-based test, 208
National Residue Program (NRP) data, 201
National Residue Survey (NRS), 205–6
New Zealand Food Safety Authority (NZFSA), 206

samples tested, FSIS, 201, 202
veterinary services, China, 207
producer education, 210
prophylactic use, 196–8
quality assurance programs, 211–15
therapeutic use, 199–200
sheep safety and quality assurance (SSQA) program, 212

sulfamethazine

Animal Medicinal Drug Use Clarification Act, 104
drug residues, prediction, 105, 106
edible tissues, 105, 107
meat withdrawal interval, 107
Monte Carlo analysis, 105
muscle parameter concentrations, 105, 108
parameter values, 105, 107
PBPK model, 104
sulfonamides
porcine colibacillosis, 225
tolerance and MRL values, 226
“Summary Report”, 56

Swine production systems

drugs, 221
prevalence, drug residues
Carbadox, 227
FSIS domestic scheduled sampling, 2013, 228–9, 229
residue violations, 227
U.S. FSIS drug residue monitoring, 2010, 227–8, 228

prophylactic use

antimicrobials, 222
Aureomycin Type A, 223
over-the-counter (OTC) status, 222
ractopamine concentration, 223
tylosin (Paylean®, Tylan®), 224
withdrawal time (WDT), 223

quality assurance programs, 229–30
therapeutic use
aminoglycosides, 225
antimicrobials, drug classes, 224, 225
antiparasitic drugs, 224, 225
swine production systems (cont’d)
 NSAIDs see nonsteroidal anti-inflammatory drugs (NSAIDs)
sulfonamides, 225–6
tetracyclines, 225, 226
USDA Export Verification Program, 230
tetracyclines
 antiparasitic drugs, 225, 226
 feed additive, 226
 IM oxytetracycline formulations, 226
theoretical maximum daily intake (TMDI), 55–6
therapeutic drugs
dairy cattle
 antimicrobial use, 140–141, 141
 Australia, 146
 European countries, 142, 144–6
 extralabel drug use, 142, 146
 French cattle veterinarians, 145
 Italian cattle veterinarians, 144
 Netherlands, 144
 Pennsylvania, 142
 Switzerland, 144
 United States approved drugs, 143
 Washington State, 141–2
sheep and goat, 199–200
time to safe concentration (TTSC), 73–4
TMDI see theoretical maximum daily intake (TMDI)
total residue depletion study, 40–41
TTSC see time to safe concentration (TTSC)
Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)
 FDA-approved food animal drugs, 294
 home page, 294, 295
 mobile phone application, 295, 296
veterinary drug residues
 adverse human health effects, 5
 antimicrobial resistance, 6–7
economic impact, 7
 in livestock
 AMDUCA, 3
 antibiotics, 3
 antimicrobial dosages, 3
 GRAS, 3
 hormone growth promoters, 2–3
 phytotoceuticals, 3
 subtherapeutic drug, 2
 therapeutic drug, 3
 quality assurance programs, 4–5
 WDT determinations, 6
VetGRAM see Veterinarian’s Guide to Residue Avoidance Management (VetGRAM)
withdrawal periods, EU
 eggs
 data evaluation, 75
 residue studies, 75
extrapolation
 different formulation/dosing/routes, administration, 77
 identical products, 76–7
 major and minor species, 76
for honey, 76
injection site residues, 70–72
marker residue, 66
maximum residue limits (MRLs), 65, 66
meat, 66–67, 67
milk, 73–5
safety span, 70
statistical method
 European Medicines Agency, 70
 linear regression model, 68
 maximum residue limits (MRLs), 69
 pharmacokmetic models, 68
 residues depletion, 69
 tolerance limits, calculation, 69
withdrawal time (WDT)
 Liquamycin LA-200, 226
 SERT outputs, 294
tetracycline residue violations, 223
 and tolerance levels, 225