Index

a
Abutment:
 actions 75
 analysis and design criteria 444–446
 anchored abutments 448–449
 front and wing walls design 446–447
 overall stability 445
 typologies and functions 241–245

Acceleration:
 action 73, 77–78
 comfort 370
 horizontal deck 370–372
 peak ground 122
 seismic 119, 121
 spectral 123–124, 424
 vertical deck 323, 368, 370, 372

Actions:
 abutment actions 75
 accidental loads 63, 124
 braking and acceleration 72, 75, 77–78
 centrifugal forces 73, 74, 78
 creep, shrinkage and relaxation 109–117
 dead load 65
 differential settlements 117–119
 during construction 125
 dynamic loads 79–84
 earth pressure 75, 78, 444, 445
 footways and cycle tracks 74–75
 friction in bridge bearings 119
 hydrodynamic actions 98–99
 imposed deformations 118
 Pedestrian parapets 75
 prestressing 327–329
 superimposed dead loads 65–66
 thermal actions 99–109
 traffic vertical loading, highway 68–72
 traffic vertical loading, railway 76–77
 walkways for maintenance 78
 wind actions 84–98
 seismic actions 121–124
 Aerodynamic coefficients 89
 Aerodynamic instability:
 divergent amplitude 95–98
 flutter 96
 vortex shedding 94
 Aesthetics:
 formal aspects 256
 colours, shadows and detailing 268–272
 order and continuity 260–262
 piers 267–268
 shape and function 258–260
 slenderness and transparency 262–266
 symmetries and asymmetries 266–267
 Urban bridges 272–277
 Alignment, bridge:
 vertical and horizontal 38–46
 transverse 46–49
 Balanced cantilever method 212–221
 Behaviour factor 124
 Beam on elastic foundation 29, 412
 Bearings:
 concrete hinges 439–441
 elastomeric bearings 430–433
 neoprene-teflon bearings 434–435
Bearsings (cont’d)
 pot bearings 435–437
 rolled metal bearings 437–439
 spherical metal bearings 438
Bimoment 338–340
Bowstring arch, bridge:
 analysis 403–404
 conceptual design 9–11
 geometry 396–401
 hangers and anchorages 402–403
 slenderness 397
 stability 399–401
Bracings–deck:
 analysis and design 394–395
 horizontal system 191–192
 vertical system 179, 188–191
Buckling:
 cable-stayed bridge 413
 load 233, 399, 449–450, 453
 local buckling 183
 lateral buckling 190–191
 flange induced 186, 385–386
 post-buckling 184
 rigid end posts 385
 shear 185, 384–386
 stiffened panel 196–197, 391–394
 torsional 412
 web breathing 186, 377
 web patch loading 185, 387–389
C
Cable stayed bridges:
 analysis and design 408–410, 416–417
 aerodynamic stability 413
 cables and anchors 402, 414–416
 conceptual design 9–13, 404–407
 deck construction 227
 deck cross-section 412
 deck stability 412
 longitudinal schemes 404–406
 mast and towers 404–405
 stay cables arrangements 12, 407
Camber, deck precamber 237, 366, 377, 410
Cantilever constructed bridges:
 camber 237
 conceptual design 212–216
 piers design 233–237
 precasted segments 221–222
 prestress tendons layout 216
 temporary stability system 237
 piers safety check 237–239
Centrifugal force 73, 74, 77–78
Charpy test 167
Circular frequency 79–80
Cofferdams 250
Cold form stiffeners 179
Collision loads 124
Columns see also Piers:
 bending stiffness 452
 buckling length and load 449–450, 453
 design criteria 364
 differential equation 454–455
 imposed deformations 116
 pre-design 232–233
 second order analysis 454–456
 slenderness 449
 ultimate resistance 459–460
Combination of loads 63–64
Concrete:
 material proprieties 139–140
 stress-stain diagram 141
 tensile strength and cracking 140
Construction methods, deck:
 balanced cantilever 212–221
 formwork launching girder 206
 incremental launching 206–212
 heavy lifting 223, 227
 precasted girder elements 221
 scaffoldings and falsework 203–206
 steel and composite decks 223–226
Corrosion, protection:
 prestressing 140–142
 stay cables 414
 steel structures 172–173
Cost-effective 258
Cracking, concrete:
 control 365
 effects 450
Creep:
 coefficient 116
 function 113
 notional size 110
Critical load see Buckling load
Curvature:
 bending curvature 289
 moment-curvature relationships 373–374, 459–460
 shrinkage curvature 111
 torsion curvature 339
Curved girder deck 350–355

Damping coefficient 77, 96, 371

Data, bridge:
 geological and geotechnical 35
 hydraulic 36–38
 topographic 32–35

Deck cross-section:
 box girder 192–202
 concrete slab 140, 174–176
 orthotropic plates 176–179
 plate girders 179–192
 precasted slab-girder 152–155
 ribbed slab 144–152
 slab-girder 144–152, 173
 voided slab 143

Deck–equipments:
 drainage system 54–55
 fascia beams 53–54
 handrails 50–53
 lighting system 55
 power traction system 61
 surfacing 50
 track system 59–60
 waterproofing 50

Dead load 65
Deck slab 173–176
Decompression limit state 299, 498, 501

Deformation, deflections limits:
 Pedestrian bridge decks 360–361
 highway bridge decks 368–369, 377
 railway bridge deck 372, 377
Degree of freedom 79, 120, 123

Depth, deck:
 apparent 265, 271
 cross-section 145–146, 157, 183
 equivalent depth 324

Design:
 actions 59–121
 conceptual design 125, 129–137
 constraints 32–49
 criteria 63, 125
 phases and methodology 31–32
 span distribution 131–134

Diaphragms:
 intermediate 160, 199
 support sections 159, 201, 326
Differential settlements 117–119
Distribution of wheel loads 70, 76–77, 285

Drainage:
 abutment 243, 446
 deck 54, 55, 476
Ductility 119, 124, 366
Durability 55, 154, 172, 176, 364
Dynamic analysis 82, 322, 369
Dynamic coefficient 79, 84

Earth pressure 75, 78, 444, 445
Eccentricity of the load 77, 309
Economical range of spans 144
Effective length 450
Effective width 182–183, 283–286, 384, 394, 519–522
Efficiency parameter, deck 146
Eigenvalues 322, 470
Elastic restraint of deck slabs 295–297
Elastic theory 289, 391
Equation of motion 121
Equilibrium equation:
 columns 454–455
 curved girders 350, 351
 dynamic 322
 plates 322
 rigid frame 305
 slabs 320
Excavation, foundations 245
Expansion joints:
 design and detailing 55
 rail expansion joint 134
 types 56
Exposure factor, wind 87–88
External prestressing 160, 238, 367

Falsework 203–206
Fan and semi-fan stays arrangement 12, 404
Index

<table>
<thead>
<tr>
<th>Fatigue:</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical details 378</td>
</tr>
<tr>
<td>damage accumulation method 380–382</td>
</tr>
<tr>
<td>damage equivalent factor 380</td>
</tr>
<tr>
<td>fatigue loads 380</td>
</tr>
<tr>
<td>Palmgren Miner rule 380</td>
</tr>
<tr>
<td>resistance classes (FAT categories) 378–380</td>
</tr>
<tr>
<td>S-N curves 379–380</td>
</tr>
<tr>
<td>stress ranges 379</td>
</tr>
</tbody>
</table>

Finite element models 318–329

Finger expansion joint 57

Flange width, effective 284

Formwork 136, 142, 173

Foundations:
- direct 245–246
- pile 246–247
- special 247–249

Freyssinet hinge see Concrete hinge

Friction coefficient 72, 211, 225, 434

Friction forces in bearings 119, 211

G

Gauss integration 295, 297, 491, 492

Girder decks:
- box girder 155–160, 192–202
- conceptual design 142, 162, 181, 195
- plate girders 179–192
- precasted beams 152–155
- transverse redistribution

Grid models 313–318

Guard rails 51, 52

H

Handrails 50–53

Harp stays arrangement 12, 404, 407

Highway traffic loads 68–75

Hinge, concrete 439–441

Historical references:
- cable-stayed bridges 29
- masonry bridges 16
- metal bridges 18
- prestressed concrete bridges 26
- reinforced concrete bridges 24–27
- suspended bridges 28
- timber bridges 18

Inclined-leg frame bridges 9, 266, 333–334

Incremental launching of bridge decks:
- launching nose 206
- prestress concrete decks 206–212
- steel girders 225

Influence lines 301–313, 349–350, 403, 418, 493, 496–497

Influence surfaces 287–295

Initial imperfections:
- geometrical 393, 450–454, 459, 518–519
- residual stresses 389, 393, 519

Inspection, walkways 50

Imposed deformations 116, 482–483, 506

Interaction concrete (M,N) diagram 460

Interaction steel (M,V) diagram 389, 509

Jet grouting technique 248

I

Lamellar tearing 166

Landscape integration 131, 256

Launching nose 206, 225, 506–507

Limit state design 63–65

Loads see Actions

Local scour 36, 37

Locked coil cables 402

Logarithmic decrement of damping 96

Long-term effects 109–119 see also Creep and Shrinkage:
- Loss of prestress 299

Material modulus 140, 142

Materials see also Concrete, Steel,
 - Reinforcement and Prestress tendons:
 - design resistance values 139–142, 166–173
 - stress-stain diagrams 141, 168

Micropiles 247

Mode of vibration 120, 322, 413, 415

Modulus of elasticity:
- effective modulus 327
- equivalent modulus 330
Moment-curvature relations see Curvature
Muller–Breslau principle 290

n
Natural frequencies 80, 83, 94, 238, 322, 369, 424
Neoprene bearings 430–437
Nonlinear effects:
arches 330
cables 330–331
columns 453

o
Open section:
elastic restraint of deck slab 295–296
ration St. Venant torsion vs warping

torsion 338
skew girder decks 318
torsional resistance 338–350
torsion in curved girders 350–353

p
Parapets 50–53, 61
Patch loading 186, 387
Pedestrian traffic 50, 371
Period of vibration 121–122
Piers:
analysis and design 459–460
inclined legs 332–333
masonry piers 229–230
slenderness 449–450
Pile foundations 246–247
Plastic hinge 387
Plastic moment 374, 387
Plastic redistribution 285
Poisson's ratio 139
Polytetrafluoroethylene 434
Precast girders 152–155
Prestressing:

equivalent loads 329
full prestressing 366
partial prestressing 364
transverse prestressing 297–300
tendons layout 149–150
PTFE see Polytetrafluoroethylene
Pure torsion see St. Venant torsion

q
Quantities, steel, prestressing 202, 210

r
Railway traffic loads 76–81
Ratios:
deck reinforcement 202
pier reinforcement 449
side span to main span–beam bridges 258–260
side span to main span–cable-stayed bridges 404
span to depth (see Slenderness)
span to rise–arch bridges 329–399
Redistribution of internal forces:
balanced construction method 357–360
due to change of structural system 356–357
precasted beams 360–361
steel-concrete composite decks 361–363
Reduced bending stiffness 418
Reinforcement:
design 229, 242, 297–298, 365
material proprieties 141
ration 210, 297, 449, 476
Relaxation function 114–118
Resal effect 335
Resistance see Bending resistance, Shear
resistance, Tensile resistance, Torsional resistance
Return period 64–65, 84–85, 170, 239
Roughness factor, wind 86–87

s
Safety factors:
actions 63
bearings 437
concrete 139, 375
fatigue resistance 383
prestressing steel 375
reinforcing steel 140, 375
structural steel 375
Scaffolding 203
Secant stiffness 460
Second order analysis:
cable‐stayed bridges 418
slender columns 453
Seismic devices, dampers 441–442
Selberg formula 97–98
Serviceability limit state 63, 299, 326,
375–376, 482, 484
Settlement of foundations 117–119, 506
Shear centre 341
Shear keys 222
Shear lag effect 283–286
Shear flow 343–344
Shear resistance:
concrete girder 502
plate girder 384–386
Shrinkage 109–117
Skew slab deck 318
Slab, design:
contemplational design 173
elastic restrain 295
FEM model 323–327
grid model 315–318
ribbed slab 144
span to depth ratio 142
transition slab 242
voided slab 142–144
Slenderness see also Span to depth ratio
flange 183, 184, 196
non‐dimensional 383–384, 389
stiffened plate 197–198
stiffeners 179, 199
web 186–187, 197
S‐N fatigue curve 379–380
Soil pressure see Earth pressure
Span by span construction method
356–357
Span length 202
Span range 203
Span to depth ratio, slenderness 138, 139,
142, 152–155, 157, 182
Stability see Buckling
Stability against overturning 237, 445
Stay cables 402
Steel:
equivalent carbon 169
coating system 172–173
heat affected zone (HAZ) 170
fine grain steel 169
lamellar tearing 169
material proprieties 166
non‐alloy steel 169
quantities 202
stress‐stain diagram 167
thermomechanical steel 169
toughness 167
weathering steel 173
weldability 166–172
Stress‐stain diagrams:
concrete 141
prestressing steel 141
reinforcing steel 141
structural steel 166–167
Structural safety 63–65, 237
Strut and tie modelling 327
Substructure see Piers and Abutments
Superstructure see Deck
Suspension bridge 13–15, 406–407

T
Tangent stiffness 460
Temperature gradient 104
Tendon layout see prestressing
Tensile strength:
concrete 139
elastomeric bearings 431
prestressing steel 140–143
reinforcing steel 140
structural steel 509
Thermal expansion coefficient 56
Thermomechanical steel 169
Thickness, effective see Creep
Terminology, bridge 1
Torsional moments 338, 351
Torsional stiffness 296, 400, 515
Toughness, steel 166–170
Towers, masts of cable‐stayed bridges 404
Track system 59–60
Traction power system (Catenary System) 61
Transparency, visual 262
Transverse bending moment 290–297
Transverse load distribution methods:
 orthotropic plate approach 308–313
 other transverse load distribution methods 313
 rigid cross beam methods: Courbon method 304–306
Transverse prestressing 297–299
Transverse shear force 299
Traveller, formwork 216, 237
Typology, bridge:
 arch bridge 9–10
 beam bridge 6–8
 bowstring arch bridge 9–11
 cable-stayed bridge 9–14
 frame bridge 6
 girder beam bridge 8
 suspension bridge 13–14

V
Vibration, structural:
 damped 79, 441–442
 forced 96
 mode 120, 322, 413, 415
 self-induced 96
 stay cables 414–415
 undamped, free 79–80
 user comfort 370
Virtual work, method of 105, 353
Vogt coefficients 334

W
Warping stresses 189, 339–340
Warren truss 256
Waterproofing membrane 49
Weathering steel 173
Web:
 concrete, thickness 160
 flange induced buckling 185–186, 385–386
 patch loading 180, 387
 steel, thickness 186
Web breathing 187–188, 377
Weldability 166–172
Wind-induced vibrations 376
Wind load 84–98
Wind speed 85–86

u
Ultimate limit state 63, 285, 364–365, 373, 445, 450
Ultimate load 389, 393–394
Ultimate moment 384
Ultimate resistance see Bending resistance, Shear resistance, Torsional resistance
Unbounded tendons 140, 364
Undamped system 79
Uplift at bearings 132