Appendix B

Properties of Expectations
and Variances

Let \(Y \) denote a random variable that takes on values according to some probability density function if \(Y \) is continuous or some probability mass function if \(Y \) is discrete.

The expected value, or expectation, of \(Y \) is simply its mean or average value and is usually denoted by:

\[
E(Y) = \mu.
\]

It is often referred to as the first moment of \(Y \), since it describes the location of the center of the distribution. The precise definition of the expectation of \(Y \) is that it is a weighted average of all the possible values of \(Y \), with weights determined by the probabilities associated with each possible value.

The variance of \(Y \), often denoted by \(\sigma^2 \) or \(\text{Var}(Y) \), is a measure of the dispersion or variability around the mean or expected value of \(Y \). The variance is often referred to as the second central moment of \(Y \) and is defined as:

\[
\sigma^2 := \text{Var}(Y) := E[(Y - E(Y))^2].
\]

The variance is a weighted average of the squared deviations of \(Y \) around its mean. Because the variance is expressed in squared units of \(Y \), a measure of variability in
the original units of \(Y \) is given by the standard deviation,
\[
\sigma := \sqrt{\text{Var}(Y)}.
\]

Finally, the covariance between two random variables, \(X \) and \(Y \), is defined as
\[
\text{Cov}(X, Y) := \mathbb{E} \left[[X - \mathbb{E}(X)][Y - \mathbb{E}(Y)] \right],
\]
and is a measure of the linear dependence between \(X \) and \(Y \). If \(X \) and \(Y \) are independent, then \(\text{Cov}(X, Y) = 0 \). Note that the covariance of a variable with itself is the variance, \(\text{Cov}(Y, Y) = \text{Var}(Y) \).

Properties of Expectations and Variances

Next we consider some properties of expectations and variances. Let \(X \) and \(Y \) be two (possibly dependent) random variables and let \(a \) and \(b \) denote non-random constants.

Then the expectation operator, \(\mathbb{E}(\cdot) \), has the following five important properties:

1. \(\mathbb{E}(a) = a \)
2. \(\mathbb{E}(bX) = b \mathbb{E}(X) \)
3. \(\mathbb{E}(a + bX) = a + b \mathbb{E}(X) \)
4. \(\mathbb{E}(aX + bY) = a \mathbb{E}(X) + b \mathbb{E}(Y) \)
5. \(\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y) \) (unless \(X \) and \(Y \) are independent)

Thus expectation is a linear operator in the sense that it respects or preserves the arithmetic operations of addition and multiplication by a constant. As a result the expected value of a linear function of \(Y \) (e.g., \(a + bY \)) is simply the same linear function of the expected value of \(Y \) (e.g., \(a + b \mathbb{E}(Y) \)).

The variance operator, \(\text{Var}(\cdot) \), has the following five important properties:

1. \(\text{Var}(a) = 0 \)
2. \(\text{Var}(bX) = b^2 \text{Var}(X) \)
3. \(\text{Var}(a + bX) = b^2 \text{Var}(X) \)
4. \(\text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) + 2ab \text{Cov}(X, Y) \)
5. \(\text{Var}(aX - bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) - 2ab \text{Cov}(X, Y) \)

In particular, if \(X \) and \(Y \) are dependent, then
\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) + 2 \text{Cov}(X, Y)
\]
and
\[
\text{Var}(X - Y) = \text{Var}(X) + \text{Var}(Y) - 2 \text{Cov}(X, Y).
\]
Finally, we note that the expectation and variance operators can also be applied to vectors of random variables. For example, let \(\mathbf{Y} \) be a \(n \times 1 \) (column) response vector (e.g., repeated measurements at \(n \) different occasions),

\[
\mathbf{Y} = \begin{pmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{pmatrix},
\]

then:

\[
\mathbf{E}(\mathbf{Y}) = \begin{pmatrix}
\mathbf{E}(Y_1) \\
\mathbf{E}(Y_2) \\
\vdots \\
\mathbf{E}(Y_n)
\end{pmatrix},
\]

and:

\[
\text{Cov}(\mathbf{Y}) =
\begin{pmatrix}
\text{Var}(Y_1) & \text{Cov}(Y_1, Y_2) & \ldots & \text{Cov}(Y_1, Y_n) \\
\text{Cov}(Y_2, Y_1) & \text{Var}(Y_2) & \ldots & \text{Cov}(Y_2, Y_n) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}(Y_n, Y_1) & \text{Cov}(Y_n, Y_2) & \ldots & \text{Var}(Y_n)
\end{pmatrix}.
\]