Transcriptional Profiling of Synovial Macrophages Using Minimally Invasive Ultrasound-Guided Synovial Biopsies in Rheumatoid Arthritis

Arthur M. Mandelin II,1 Philip J. Homan,1 Alexander M. Shaffer,1 Carla M. Cuda,1 Salina T. Dominguez,1 Emily Bacalao,1 Mary Carns,1 Monique Hinchcliff,1 Jungwha Lee,1 Kathleen Aren,1 Anjali Thakrar,1 Anna B. Montgomery,1 S. Louis Bridges Jr.,2 Joan M. Bathon,3 John P. Atkinson,4 David A. Fox,5 Eric L. Matteson,6 Christopher D. Buckley,7 Costantino Pitzalis,8 Deborah Parks,4 Laura B. Hughes,2 Laura Geraldino-Pardilla,3 Robert Ike,5 Kristine Phillips,5 Kerry Wright,6 Andrew Filer,7 Stephen Kelly,8 Eric M. Ruderman,1 Vince Morgan,1 Hiam Abdala-Valencia,1 Alexander V. Misharin,1 G. Scott Budinger,1 Elizabeth T. Bartom,1 Richard M. Pope,1 Harris Perlman,1 and Deborah R. Winter1

Objective. Currently, there are no reliable biomarkers for predicting therapeutic response in patients with rheumatoid arthritis (RA). The synovium may unlock critical information for determining efficacy, since a reduction in the numbers of sublining synovial macrophages remains the most reproducible biomarker. Thus, a clinically actionable method for the collection of synovial tissue, which can be analyzed using high-throughput strategies, must become a reality. This study was undertaken to assess the feasibility of utilizing synovial biopsies as a precision medicine–based approach for patients with RA.

Methods. Rheumatologists at 6 US academic sites were trained in minimally invasive ultrasound-guided synovial tissue biopsy. Biopsy specimens obtained from patients with RA and synovial tissue from patients with osteoarthritis (OA) were subjected to histologic analysis, fluorescence-activated cell sorting, and RNA sequencing (RNA-seq). An optimized protocol for digesting synovial tissue was developed to generate high-quality RNA-seq libraries from isolated macrophage populations. Associations were determined between macrophage transcriptional profiles and clinical parameters in RA patients.

Results. Patients with RA reported minimal adverse effects in response to synovial biopsy. Comparable

Submitted for publication March 17, 2017; accepted in revised form February 8, 2018.

1Arthur M. Mandelin II, MD, PhD, Philip J. Homan, PhD, Alexander M. Shaffer, BA, Carla M. Cuda, PhD, Salina T. Dominguez, BA, Emily Bacalao, BA, Mary Carns, MS, Monique Hinchcliff, MD, Jungwha Lee, PhD, Kathleen Aren, BA, Anjali Thakrar, BA, Anna B. Montgomery, PhD, Eric M. Ruderman, MD, Vince Morgan, BA, Hiam Abdala-Valencia, PhD, Alexander V. Misharin, MD, PhD, G. Scott Budinger, MD, Elizabeth T. Bartom, PhD, Richard M. Pope, MD, Harris Perlman, PhD, Deborah R. Winter, PhD: Northwestern University Feinberg School of Medicine, Chicago, Illinois; 2Harris Perlman, PhD, Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M320, Chicago, IL 60611 (e-mail: h-perlman@northwestern.edu); or to Deborah R. Winter, PhD, Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M314, Chicago, IL 60611 (e-mail: dwinter@northwestern.edu).

Address correspondence to Richard M. Pope, MD, Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M320, Chicago, IL 60611 (e-mail: rmp158@northwestern.edu); or to Harris Perlman, PhD, Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M314, Chicago, IL 60611 (e-mail: h-perlman@northwestern.edu); or to Deborah R. Winter, PhD, Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M309, Chicago, IL 60611 (e-mail: dwinter@northwestern.edu).

Submitted for publication March 17, 2017; accepted in revised form February 8, 2018.
RNA quality was observed from synovial tissue and isolated macrophages between patients with RA and patients with OA. Whole tissue samples from patients with RA demonstrated a high degree of transcriptional heterogeneity. In contrast, the transcriptional profile of isolated RA synovial macrophages highlighted different subpopulations of patients and identified 6 novel transcriptional modules that were associated with disease activity and therapy.

Conclusion. Performance of synovial tissue biopsies by rheumatologists in the US is feasible and generates high-quality samples for research. Through the use of cutting-edge technologies to analyze synovial biopsy specimens in conjunction with corresponding clinical information, a precision medicine–based approach for patients with RA is attainable.

Despite the many therapies available for patients with rheumatoid arthritis (RA), there is little information to guide selection of the most effective treatment for an individual patient. Forty-six percent of patients with RA respond (defined as 50% improvement based on the American College of Rheumatology criteria (ACR20) to conventional disease-modifying antirheumatic drugs (DMARDs) (1,2) or conventional DMARDs plus antitumor necrosis factor (anti-TNF) therapy (3–11). However, 20–40% of patients in clinical trials never demonstrate even a minimal response (never meet the ACR20 response criteria) (7–11). Based on a population of >300 million in the US, a disease prevalence of 0.6%, and a course of 3–4 months per biologic DMARD therapy, as much as $2.5 billion is wasted annually on inadequate therapy (12,13). There is a clear need to develop precision-based therapy for patients with RA, whereby clinical information such as novel biomarkers will enhance our ability to predict the therapeutic response and thereby limit ineffective therapy.

Previous studies have linked macrophages to the pathogenesis of RA. Synovial macrophages are highly activated, express elevated levels of Toll-like receptor 2 (TLR-2), TLR-4, and TLR-7 (14,15), and contribute directly and indirectly to synovial inflammation and the destruction of cartilage and bone through the production of degradative enzymes, cytokines, and chemokines. Further, TLR-2, TLR-3, and TLR-7 play essential roles in the development of inflammatory arthritis in mice (16–18). More importantly, macrophages are the central producers of interleukin-1β (IL-1β), IL-6, and TNF, which comprise the 3 essential proinflammatory cytokines that contribute to RA pathogenesis. To date, approved therapies, including anti-TNF, anti-IL-6, JAK inhibitors, CTLA-4Ig, and anti-CD20, have all been shown to decrease synovial inflammation and bone destruction and, more importantly, reduce macrophage numbers in the synovial sublining (19–21). Despite the fact that synovial macrophages were discovered more than a half-century ago and are crucial for RA pathogenesis (22), surprisingly very little is known about them.

Biomarkers that indicate sensitivity or resistance to a particular therapy are sorely lacking in RA. For the most part, researchers have used peripheral blood, with minimal success, to identify biomarkers for predicting a response to therapy (23). Similarly, the results of genetic approaches have been disappointing (24). More recent studies suggest that the synovium, as the target organ in RA, may have greater potential in determining therapeutic response (23). Currently, the most well-known and reproducible biomarker for response to RA therapy is a reduction in the number of sublining synovial macrophages, determined by immunohistochemical analysis of synovial tissue (25). While arthroscopy has been the most commonly used method to obtain synovial tissue before and after therapy (26–32) and yields substantial amounts of synovial tissue, it is invasive, requires surgical suites, and is expensive, thus limiting its usefulness in clinical practice and clinical studies. Synovectomy and joint replacement surgery are other common mechanisms for researchers to obtain synovial tissue, but patients undergoing these procedures typically exhibit end-stage disease characteristics and samples likely do not reflect the overall pathophysiology at the time when therapeutic decisions are made, prior to progressive joint damage.

Ultrasound technology has advanced significantly and is widely used by rheumatologists as a mechanism for determining the degree of synovitis and inflammation, detecting erosions, and identifying sites for therapeutic injection (33). Over the past decade, ultrasound has been used to facilitate the collection of synovial tissue (29). Minimally invasive ultrasound-guided synovial tissue biopsies have been performed for research purposes throughout Europe, and the standardization for these procedures has been fully evaluated (23,29,34–46). However, there are currently no published studies from the US describing the use of ultrasound-guided synovial tissue biopsies for research. The potential reasons that this technique has not been commonly adopted for research in the US include a lack of training, differences in the medical system and patient populations between Europe and the US, and a lack of “buy-in” from rheumatologists who would recommend the procedure to their patients.

We assembled a consortium of established academic rheumatology groups in the US, including the University of Alabama at Birmingham, Columbia University, Mayo Clinic, Washington University, University of
Michigan, and Northwestern University, to form the RhEumatoid Arthritis SynOvial tissue Network (REASON). Our consortium was trained in minimally invasive ultrasound-guided synovial biopsy techniques in the UK and has since performed more than 41 biopsies on RA patients with active disease in the US. RNA was extracted from whole synovial tissue and from synovial macrophages isolated by fluorescence-activated cell sorting (FACS) for RNA sequencing (RNA-seq) analysis. The transcriptional profiles of isolated macrophages were used to distinguish between RA patient groups and identify modules of co-regulated genes that were associated with clinical disease and medication. We believe that these studies demonstrate the utility of isolating individual populations of cells within the synovium to understand the pathobiology of the disease and to establish a precision medicine-based approach for RA patients.

PATIENTS AND METHODS

Patients. Adult patients with RA, diagnosed according to either the ACR 1987 criteria (47) or ACR/European League Against Rheumatism 2010 criteria (48), were selected as candidates for ultrasound-guided synovial biopsy based on the presence of palpable synovitis documented by clinical examination (49,50). To increase the uniformity of the collected tissue, only wrists were sampled in this study. Candidate joints were scanned with standard 2-dimensional B-mode ultrasound with and without Doppler (SonoSite M-MSK with a 15–6 MHz linear probe; FujiFilm SonoSite), and were included in the study if they had a grayscale synovitis score of ≥2 on a 4-point scale (35). Exclusion criteria included uncontrolled comorbid diseases, anticoagulation therapy (low-dose aspirin and nonsteroidal antiinflammatory drugs [NSAIDs] were allowed), use of systemic steroids in excess of prednisone 10 mg daily or equivalent, administration of intramuscular steroids within the previous 4 weeks or intraarticular steroids into the target joint within the past 8 weeks, chronic or recurrent infection, intolerance to lidocaine or chlorhexidine, inability to communicate effectively in English, and membership in a vulnerable population (prisoners, pregnant women, etc.).

Training for ultrasound-guided synovial biopsy. The REASON consortium was created to adopt ultrasound-guided synovial biopsy for research purposes in the US. Rheumatologists from REASON who were experienced in ultrasonography traveled to the UK for a 2-day training session with Drs. Andrew Filer, Christopher D. Buckley, Stephen Kelly, and Costantino Fitzalis on ultrasound-guided synovial biopsy. This session included observation of ultrasound-guided synovial biopsies followed by a practice session using cadavers. Following the training session, the rheumatologists from REASON attended 2 additional practice sessions using cadavers at Northwestern University for refresher training.

Ultrasound-guided synovial biopsy procedure. Procedures were performed either in examination rooms in outpatient rheumatology clinics or in a designated research space. After the presence of synovitis was re-confirmed by sonographic criteria as described above using customary non-sterile techniques, patients were dressed in a laboratory cover-up or examination gown, surgical mask, and surgical hair net. Rheumatologists performing the biopsy were in surgical scrubs with cap, mask, sterile surgical gown, and sterile gloves. The ultrasound probe was placed in a sterile cover. The patient’s hand and arm were scrubbed with chlorhexidine from the fingertips to the mid-forearm, and the patient then placed the hand palm down onto a surgical wrist support in a prepared sterile field. The arm was draped in a sterile manner with a fenestrated sheet centered on the wrist, and sterile ultrasound gel was applied.

Ultrasound scanning over the dorsal aspect of the wrist joint in both the longitudinal and transverse planes was then used to locate the region of greatest synovitis in the wrist, usually immediately dorsal/superficial to either the proximal or the distal row of carpal bones. A wheal of lidocaine was used to anesthetize the skin at the ulnar aspect of the wrist. While monitoring the procedure under ultrasound in real time with the probe in the transverse position, an initial ultrasound-guided lidocaine pass into the target joint was made with a 25-gauge × 1.5-inch needle. A second ultrasound-guided lidocaine pass was made into the same wound and needle track with an 18-gauge × 1.5-inch needle to ensure anesthesia and a clear path for the biopsy device. Care was taken to avoid neurovascular structures and tendons, especially the extensor digiti minimi. An appropriately sized Quick-Core Biopsy needle (Cook Medical) was then selected based on the target wrist (usually 18 gauge × 9 cm, with 10-mm throw) and introduced into the same needle track.

Using continuous real-time ultrasound imaging, the jaw of the device was positioned within the synovium (defined by Outcome Measures in Rheumatology [51] as intraarticular, hypoechoic, non-displaceable, poorly compressible tissue) at the point of its greatest abundance, usually between the common extensor tendon bundle and the underlying carpal row. The device was triggered and removed. The sample was removed from the device by scraping with a sterile 21-gauge needle and placed into phosphate buffered saline (PBS) (Thermo Fisher). The process was repeated to obtain a total of 12 samples. Not all biopsy passes yielded tissue; most procedures resulted in 1–3 “empty passes,” and thus most patients underwent a total of 13–15 passes to obtain 12 samples of synovium. All samples were taken through the same skin wound but with varying positions of the jaw of the device within the region of most abundant synovitis, with the intent of sampling the entire chosen region uniformly. Variations in the position of the device also included variations in the radial orientation of the jaw with respect to the axis of the device. For example, some samples were taken from 12 o’clock, closer to the extensor tendon bundle, and some from 6 o’clock, closer to the carpal row.

At the completion of the procedure the biopsy site was washed, and after confirming hemostasis, an adhesive bandage was applied to the single puncture wound. None of the patients needed a suture. Patients were instructed in routine after-care and encouraged to use over-the-counter acetaminophen for any discomfort, with permission to escalate to over-the-counter NSAIDs if needed. Patients were instructed to contact the research team by telephone to report any adverse events, including delayed healing or pain not controlled with over-the-counter agents as described above. Most procedures lasted a total of 45–60 minutes from the non-sterile scout imaging to the patient departing the procedure room. Patients did not require conscious sedation and were sent home immediately with no postprocedure observation or recovery period and no activity restrictions.
Tolerability. Tolerability of the procedure was assessed by questionnaires administered before and after the procedure as previously described (36). Patients were asked to rate pain, swelling, and stiffness on a 10-point visual analog scale (VAS). After the procedure, patients were also asked by questionnaire to rate their discomfort during the procedure (none, mild, moderate, or severe) and to rate their likelihood to agree to undergo another procedure (very likely, somewhat likely, unsure, somewhat unlikely, or very unlikely).

Tissue preparation and flow cytometric analysis. From the 12 pieces of synovial tissue obtained per patient by needle biopsies, 4 were selected at random and placed into 10% neutral buffered formalin for histologic analysis, 4 more randomly selected pieces were placed into RNAlater (Ambion) for whole tissue processing, and the remaining 4 were placed into PBS for tissue digestion. Osteoarthritis (OA) synovial tissue was received from the National Disease Research Interchange and was shipped in Dulbecco’s modified Eagle’s medium and antibiotics overnight on wet ice. Only soft tissues containing meniscus and synovium were processed. OA synovial tissue was processed identically to tissue from patients with RA.

The length of digestion (30–60 minutes) and intensity of mechanical disaggregation before and after incubation were varied to optimize macrophage isolation. Mechanical disaggregation was performed on a gentleMACS Dissociator (Miltenyi Biotec). The pre-set gentleMACS programs m_lung_01 and m_brain_01 were used to test moderate and aggressive mechanical disaggregation, respectively. Sorted macrophages used for analysis were processed by infusing tissue with a digestion buffer (RPMI 1640 [Sigma], Liberase TL [0.1 mg/ml; Roche], and DNase [0.1 mg/ml; Roche]) and minced with scissors. Tissue suspensions were transferred to C-tubes (Miltenyi Biotec) and incubated for 1 hour at 37°C with aggressive disaggregation before and after incubation. The digestion reaction was quenched with magnetic-activated cell sorter (MACS) buffer (Miltenyi Biotec), and the tissue suspension was filtered over a 40-micron filter. Red blood cells were lysed (BD Pharm Lyse) and then washed twice with Hanks balanced salt solution (Thermo Fisher). Cells were resuspended in MACS buffer, and kept on ice until sorted.

Sorter macrophages were resuspended in MACS buffer, and kept on ice until sorted. Synovial macrophages (CD45+, CD11b+, HLA-DR+, CD15–, CD1c–, CD206+) were sorted on a BD FACSaria Sorp instrument (BD Biosciences) at the Northwestern University Robert H. Lurie Comprehensive Cancer Center Flow Cytometry Core Facility. Cells from RA synovial biopsies were sorted directly into 100 μl PicoPure RNA extraction buffer (Arcturus Bioscience), Cells (>10,000) from OA tissues were sorted into cold MACS buffer (Miltenyi Biotec) and immediately centrifuged at 4°C. Supernatant was removed, and cells were resuspended in 100 μl PicoPure RNA extraction buffer. All cells were stored at −80°C until RNA was extracted.

Histopathologic and immunohistochemical analysis. The 4 biopsy pieces fixed in 10% neutral buffered formalin for histologic analysis were stored overnight and submitted to the Pathology Core Facility at Northwestern University. Paraffin-embedded tissue sections were stained with hematoxylin and eosin (H&E) and for CD45 or CD68. Slide images were taken at 40× and 100× magnification using an Olympus BX41 microscope and Olympus DP21 camera. Since not all samples subjected to this procedure demonstrate synovial lining, other characteristics including CD45 and CD68 staining were included to provide a semiquantitative or qualitative analysis of inflammation in the biopsied tissue. RA synovial biopsy sections stained with H&E or with antibodies to either CD45 or CD68 antigens were scored for the percent synovium of all 4 pieces of tissue. The CD45 and CD68 scores were determined using a modified scoring system of 0–4 that indicates the percent of CD45 or CD68 positivity in identified synovium (35). All scoring was performed by an experienced rheumatologist (RMP) who was blinded with regard to the origin of the samples.

Preparation of the RNA library. RNA was isolated from whole synovial tissue by homogenizing tissue with 3.0 mm of high-impact zirconium beads and a BeadBlaster 24 microtube homogenizer (Benchmark Scientific). RNA was extracted from the cell homogenate using a Qiagen Plus Mini kit. RNA from sorted macrophages was extracted using a Picopure RNA isolation kit according to the instructions of the manufacturer (Arcturus). RNA quality and quantity were measured using a High-Sensitivity RNA ScreenTape System (Agilent Technologies). Whole synovial tissue RNA-seq libraries were prepared from 90 ng of total RNA using a NEBNext Ultra Kit with poly(A) enrichment. RNA-seq libraries from sorted macrophage populations were prepared using a SMART-Seq v4 Ultra Low Input RNA Kit (Clontech Laboratories) followed by Nextera XT protocol (Illumina). RNA-seq libraries were sequenced on a NextSeq 500 instrument (Illumina) with ~5–10×10⁶ aligned reads per sample. A commercially available universal human RNA reference was prepared along with the synovial RNA to represent background RNA expression.

RNA-seq analysis. RNA-seq data were de-multiplexed using bcl2fastq, and RNA-seq reads were aligned to the human reference genome (NCBI, hg19) using TopHat2 (version 2.17.1.14) aligners (52). Gene coverage of samples was calculated using the R SeQC package (53). Sample complexity was calculated using the samtools makeTagDirectory command and identifying the uniquely aligned positions compared to the number of aligned reads. Normalized gene counts were calculated using HTSeq (54). For our analysis, we focused on genes in which at least 2 samples had log₂ (fragments per kilobase per million [FPKM]) expression >3. For visualization, GENE-E software (https://software.broadinstitute.org/GENE-E/) was used to generate Pearson’s pairwise correlation matrices and to perform K-means and hierarchical clustering. Differential gene expression between RA and OA samples in the whole tissue data set was determined using the edgeR Bioconductor package parameters as previously described (adjusted P < 0.01) (55,56). Gene Ontology (GO) associations were determined by GOrilla (57). To account for the increased noise of the low-input macrophage-specific RNA-seq, we focused our analysis on genes in which at least 2 samples had log₂ (FPKM + 1) expression >5, and lower values were set to 5. We defined differentially expressed genes across patients with RA as those with an adjusted range (log₂ fold change between the second highest and second lowest samples) >1. We removed genes driven by 1 outlier sample (defined as genes where the difference between the maximum and second highest values was greater than the difference between the second highest and second lowest values), leaving 553 genes for the analysis. Modules were identified by clustering genes using K-means clustering and calculating pairwise Pearson’s correlation.
between each gene. The enrichment or depletion of modules within each patient was determined by a Kolmogorov-Smirnov test comparing the expression level of genes in a given module to all 553 genes (with P values less than 0.05 considered significant).

Statistical analysis. Associations between RNA-seq expression patterns in patients and clinical parameters, including disease duration, swollen joint count (SJC), tender joint count (TJC), early disease (defined as a disease duration of <2 years), rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibodies, and history of treatment with biologic agents or methotrexate, were determined (Table 1). Disease duration, SJC, and TJC were recorded as continuous variables. Early disease, RF, anti-CCP antibodies, and patient medication history were recorded as categorical data (either positive or negative). Patients were divided into 2 groups based on global gene expression data, and associations of patient treatment and clinical data with group 1 and group 2 were determined using Fisher’s exact test for categorical variables and Student’s t-test for continuous variables. Pearson’s correlation was used to determine the association between the patient’s median gene expression for each module and continuous variables. The log2 fold change of the average median module expression between patients with a positive value and those with a negative value was used to calculate associations with categorical variables (data are available upon request from the corresponding author). Significant changes in gene expression were determined using Student’s t-test.

RESULTS

Patient demographics. The REASON consortium was created to adopt ultrasound-guided synovial biopsy for research purposes in the US. Over 2 years, we recruited 41 patients with RA from REASON sites for ultrasound-guided synovial biopsies. Patient demographics, clinical data, and other pertinent information are presented in Table 1.

| Table 1. Patient characteristics and sample data*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
<td>Histologic findings in RA synovial biopsy specimens, mean ± SEM (n = 30)‡</td>
</tr>
<tr>
<td></td>
<td>% synovial tissue</td>
</tr>
<tr>
<td></td>
<td>CD45 score (range 0–4)</td>
</tr>
<tr>
<td></td>
<td>CD68 score (range 0–4)</td>
</tr>
<tr>
<td></td>
<td>RNA sequencing data, mean ± SEM</td>
</tr>
<tr>
<td></td>
<td>Whole tissue samples (n = 9 RA and 9 OA)</td>
</tr>
<tr>
<td></td>
<td>RIN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of aligned reads, million</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of total reads aligned</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% complexity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort samples (n = 15 RA and 9 OA)</td>
</tr>
<tr>
<td></td>
<td>Cells sorted</td>
</tr>
<tr>
<td></td>
<td>RA 1,642 ± 1,178</td>
</tr>
<tr>
<td></td>
<td>OA 77,414 ± 26,413</td>
</tr>
<tr>
<td></td>
<td>Number of aligned reads, million</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% of total reads aligned</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>% complexity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Except where indicated otherwise, values are the mean ± SD. Anti-CCP = anti-cyclic citrullinated peptide; ESR = erythrocyte sedimentation rate; DAS28 = Disease Activity Score in 28 joints; CDAI = Clinical Disease Activity Index; RAPID3 = Routine Assessment of Patient Index Data 3; PGA = physician’s global assessment; HAQ = Health Assessment Questionnaire; TJC = tender joint count; SJC = swollen joint count; TNF = tumor necrosis factor; IL-6 = interleukin-6; RA = rheumatoid arthritis; OA = osteoarthritis; RIN = RNA integrity number.
† Disease duration of <2 years.
‡ All slides were scored by the same physician (RMP), who was blinded with regard to the origin of the samples. The amount of synovial tissue in each biopsy specimen was estimated by analysis of structure, lining, and leukocyte content.
Safety and tolerability of ultrasound-guided synovial biopsy. Real-time ultrasound images were used to guide placement of the needle device for biopsy within the synovium of the dorsal side of the wrist (Figures 1A and B). Thirty-one of the 41 patients responded with complete preprocedure and postprocedure VAS assessments of pain, stiffness, and swelling of the biopsied wrist. There were no differences between the preprocedure and postprocedure scores in these patients (Figure 1C). Patients were then asked to rate their likelihood of agreeing to repeat the procedure, and 90.3% of the patients reported that they would be very likely or somewhat likely to repeat the biopsy, while only 6.5% stated that they would be somewhat or very unlikely to have a repeat biopsy (Figure 1C).

Histologic assessment of synovial tissue. The quality of the synovial biopsy specimens obtained from patients with RA was first quantified by histologic assessment of tissue structure, presence of synovial lining, and leukocytes (Table 1 and Figures 1D and E). Importantly, all but 5 samples contained synovial tissue (>10%), and
11 biopsy specimens contained ≥50% synovial tissue. The abundance of CD45-positive and CD68-positive cells in each sample was scored on a modified scale of 0–4 (35), revealing a substantial enrichment of hematopoietic cells and, more specifically, macrophages in most biopsy samples (Table 1).

RNA-seq analysis of whole tissue synovial biopsy specimens. The fidelity of the complementary DNA library created from whole synovial tissue obtained from RA synovial biopsy specimens or from OA patients following whole joint replacement was assessed by a variety of criteria (Table 1). The quality of the RNA-seq data for whole tissue samples was determined by plotting the number of detectable genes at varying FPKM thresholds across samples. There was no observable difference between the number of genes expressed in RA versus OA samples (Figure 2A). The read density over the length of genes revealed that all samples had comparable coverage across the samples (Figure 2B). Numbers to the right of the matrix are the patient numbers for each sample. HS21 = human sample 21. D, Venn diagram of the genes expressed in RA and OA samples. The differential analysis (adjusted \(P < 0.01 \)) revealed 411 and 330 genes that were preferentially expressed in RA and OA tissue, respectively. Select processes from gene ontology (GO) enrichment analysis of genes preferentially expressed in each tissue type are listed. E, Normalized gene expression of individual genes in RA versus OA samples. Symbols represent individual samples; horizontal lines and error bars show the median and interquartile range. * = adjusted \(P < 0.01 \).

Figure 2. Analysis of whole tissue RNA sequencing libraries. A, Number of genes with an expression level greater than a given \(\log_2 \) (fragments per kilobase per million [FPKM]) value for each osteoarthritis (OA), rheumatoid arthritis (RA), and universal human RNA (uhRNA) control sample. B, Gene coverage plot displaying the average read density across genes from 5′ to 3′. C, Pairwise Pearson’s correlations of gene expression between individual patient samples. Samples are organized by hierarchical clustering based on their Pearson’s correlation coefficients (corr. coeff.) across samples. Numbers to the right of the matrix are the patient numbers for each sample. HS21 = human sample 21. D, Venn diagram of the genes expressed in RA and OA samples. The differential analysis (adjusted \(P < 0.01 \)) revealed 411 and 330 genes that were preferentially expressed in RA and OA tissue, respectively. Select processes from gene ontology (GO) enrichment analysis of genes preferentially expressed in each tissue type are listed. E, Normalized gene expression of individual genes in RA versus OA samples. Symbols represent individual samples; horizontal lines and error bars show the median and interquartile range. * = adjusted \(P < 0.01 \).
Figure 3. Isolation of synovial macrophages and macrophage-specific RNA sequencing. A, Gating strategy used to identify synovial macrophages in osteoarthritis (OA) and rheumatoid arthritis (RA) tissue. DC = dendritic cell. B, Optimization of the synovial tissue processing procedure. The success of tissue processing was evaluated by the number of viable, CD45+, and CD11b+ cells identified by flow cytometry. C, Number of genes with an expression level greater than a given log₂ (fragments per kilobase per million [FPKM]) value for each OA, RA, and universal human RNA (uhRNA) control sample. D, Gene coverage plot displaying the average read density across genes from 5' to 3'. E, Log₂ fold change of gene expression between RA and OA whole tissue samples and macrophages. Broken lines indicate a difference of 1; solid line indicates no change in expression. Select genes are displayed. F, Venn diagram comparing numbers of genes expressed in sorted macrophages and whole tissue. G, Numbers of genes differentially expressed in whole tissue that were also detected in sorted macrophages from RA and OA samples. H, Log₂ fold change in expression of the 467 differentially expressed genes (in G) in whole tissue and sorted macrophages. Genes are ordered along the x-axis by decreasing fold change in whole tissue. The numbers of genes preferentially expressed in RA tissue (log₂ fold change >1) and OA tissue (log₂ fold change <−1) are indicated in red and blue, respectively.
across the genome (Figure 2B). Nine RA synovial biopsy samples and 9 OA tissue samples produced high-quality RNA-seq libraries and were used for further analyses, concentrating on a set of 9,366 expressed genes. The global gene expression profiles from synovial tissue samples were heterogeneous across the RA samples and did not clearly cluster apart from the OA samples (Figure 2C). The variability among patients highlights the complexity in the presentation of RA in whole tissue and points to a shift in gene expression in individual cell types that could be associated with disease activity status and therapy at the time of biopsy.

Differential expression analysis identified genes that were specific to either RA or OA synovial tissue samples. We found 411 RA-specific genes and 330 OA-specific genes (Figure 2D). GO analysis revealed that RA-specific genes were associated with a wide range of immune processes, including leukocyte activation, T cell activation, and B cell–mediated immunity, while OA-specific genes were associated with more homeostatic processes, such as osteoblast differentiation, bone remodeling, and the epidermal growth factor receptor signaling pathway. Specifically, we found several macrophage-related genes (FCGR2A, IRF8, MyD88, and CD14) that were significantly up-regulated in RA relative to OA synovial tissue (Figure 2E). Genes that were preferentially expressed in OA, such as lubricin (58), JUN (59), ADAMTS1 (60), and SCRG1 (61), have previously been linked to differences in synovial tissue function in OA. The broad range of pathways involved in RA at the level of whole tissue highlights the need for a cell type–specific approach to better understand the role of particular cell populations.

Synovial macrophage digestion and RNA-seq analysis. Multiparameter flow cytometry was used to isolate macrophages from RA and OA synovial tissue (Figure 3A). Macrophages were gated via the inclusion of singlets, viable, CD45+, and HLA–DR+ cells. Macrophages were further isolated by excluding dendritic cells and then gating on the remaining HLA–DR+ cells followed by CD11b+ cells to identify the CD206+ macrophage populations. An optimized digestion protocol was developed to isolate viable macrophages from synovial tissue. The effectiveness of tissue digestion was assessed by maximizing the number of viable, CD45+, and CD11b+ cells within a given single-cell suspension (Figure 3B). A mean ± SEM of 1,642 ± 1,178 macrophages was isolated from digested biopsy samples and prepared for RNA-seq analysis (Table 1). An identical digestion protocol was used to isolate cell populations from OA synovial tissue as

![Figure 4. Analysis of global gene expression profiles in sorted macrophages from patients with rheumatoid arthritis.](image)

A. Pairwise Pearson's correlation of gene expression between individual patient samples. Samples are organized by hierarchical clustering based on their Pearson's correlation coefficients (corr. coeff.) across samples, forming 2 groups. HS20 = human sample 20.

B. Table of association analysis of group 1 and group 2 (as defined in A) with clinical parameters. Values reflect either the group average (for continuous variables) or percent of patients (for categorical variables). P values for disease duration, swollen joint count (SJC), and tender joint count (TJC) were determined by Student's t-test, and P values for early disease, rheumatoid factor, anti-cyclic citrullinated peptide (anti-CCP) antibody, and treatment status were determined by Fisher's exact test. Significant values are shown in red.
described above, resulting in an average of 77,414 macrophages per sample (Table 1).

Isolated macrophages from 15 RA biopsy samples and 9 OA tissue samples were collected and passed sequencing quality control for further analysis. The percent alignment of reads (average 54%) was lower than in whole tissue (average 82%) likely due to the increased noise of low input. There was a minimal difference in the number of genes detected in RA versus OA macrophages (Figure 3C). RA macrophages demonstrated comparable complexity (Table 1) and gene coverage (Figure 3D) to OA samples even though the number of RA macrophages was 45 times less than the number of sorted OA macrophages.

To determine whether RNA-seq data from macrophages provided additional information that could not be gleaned from the whole tissue data, we investigated the “macrophage-specific” gene expression profiles. A comparison of fold change in gene expression between RA and OA revealed differentially expressed genes that were detected only by whole tissue or only by macrophage-specific RNA-seq (Figure 3E). For example, genes associated with inflammatory arthritis, such as P13 (62) and MMP3 (63), were preferentially expressed in RA and OA macrophages, respectively, while no change in expression was observed in whole tissue RNA-seq. Further comparison revealed that 6,414 genes were expressed in both data sets, while 2,952 genes were exclusively found in whole tissue, and 2,116 genes were macrophage specific (Figure 3F). Genes exclusively expressed by whole tissue were likely associated with other cell types, while macrophage-specific genes were likely below the limit of detection of whole tissue RNA-seq. Of the 411 RA-specific and 330 OA-specific genes from whole tissue (Figure 2D), 315 and 152, respectively, were expressed in the macrophage-specific data set (Figure 3G). However, many of these 467 genes were not differentially expressed in the same direction in the macrophage-specific data set (Figure 3H).

Next, we compared the global gene expression profiles from synovial macrophages across patients. We identified 2 distinct groups of RA patients based on gene expression profiles (Figure 4A). Group 1 consisted of two-thirds of the patients (10 of 15) with highly similar gene expression profiles, while group 2 contained the remaining 5 patients with divergent gene expression. Patients in group 2 exhibited significantly higher SJC than those in group 1 ($P = 0.03$). These findings demonstrate the possibility for cell type-specific transcriptional profiles of RA patients to provide information about disease severity.

Modules of co-regulated genes may represent pathways that perform specific functions in disease. To identify gene modules within the macrophage transcriptional profiles, we defined a subset of 553 genes as differentially expressed across 15 RA patients after accounting for noise and outliers (see Patients and Methods). These genes were clustered into 6 modules (modules 1–6) based on the similarity in their patterns of expression across patients (Figure 5A). We calculated the enrichment or depletion of each gene module within the expression profile of each patient to determine which patients were driving these modules (Figure 5B).

Despite the limited statistical power of a sample set of 15 patients, we were able to identify associations between the expression of these gene modules in patients and clinical parameters (Figures 5C and D). For example, expression levels of module 2 genes, including CCR1 and TREM2 (Figure 5E), were significantly increased (1.31 fold or 0.39 log2 fold change; $P = 0.05$) (Figure 5D) in patients who had stopped taking methotrexate. In addition, expression levels of genes in module 3 were negatively correlated with disease severity as measured by SJC ($P = 0.007$) and had 1.7-fold higher expression in patients recently diagnosed as having RA (log2 fold change = 0.78; $P = 0.04$) (Figure 5D). Module 3 genes, such as NFKB1A and TIMP1, are involved in the cellular response to IL-1 as determined by GO enrichment (data are available upon request from the corresponding author). Module 4 genes were 1.7-fold more highly expressed in patients who were not taking a biologic medication at the time of biopsy (log2 fold change = 0.78; $P = 0.01$). Module 4 was enriched with immune response genes such as TNF and MAFB (Figure 5E). Expression of module 5 genes, such as MIF and HMGB2, was positively associated with disease severity as measured by TJC ($P = 0.03$) (Figure 5C). Genes in module 6, such as CD83 and CXCR4, were 2.0-fold higher in patients who were negative for RF (log2 fold change = 1.0; $P = 0.03$). Taken together, our data demonstrate for the first time that transcriptional profiling of isolated synovial macrophages obtained using ultrasound-guided synovial biopsies may be used to characterize patients in a biologically relevant manner.

DISCUSSION

Recent advances in ultrasound technology have opened up a new opportunity for rheumatologists to perform minimally invasive ultrasound-guided synovial tissue biopsies (25). While arthroplasty allows for the collection of large pieces of synovial tissue, using it as a method of obtaining tissue from RA patients for research purposes in the US and in a longitudinal manner is challenging (23,29,41,45,64–67). Moreover, the tissue obtained from arthroplasty is usually late stage and may not reflect ongoing active disease, unlike tissue which may be obtained
using ultrasound-guided synovial biopsy. The fact that ultrasound-guided synovial biopsies may be performed in the clinic without a surgical suite and require minimal to no recovery time for the patient outweighs the smaller amount of tissue retrieved (23,29,41,45,64–67). In fact, in several countries in Europe, this technique is used to obtain synovial tissue for research purposes in a large number of patients without significant complications (34–36,38–40,68–73). The procedure itself is widely accepted by both patients and referring rheumatologists in the US, at rates similar to those observed by our European colleagues (34,36).

Previous studies have focused on access to the joint, intrajoint synovial variation, and reproducibility of measurements using the ultrasound-guided synovial biopsy technique (34–36). Furthermore, these biopsies do not appear to affect subsequent clinical or ultrasound disease activity assessments, which is important for patients who might subsequently enroll in clinical trials (74). European groups have also performed numerous studies to validate the needle biopsy and portal and forceps procedures and tissue sampling (34–36,38–40,68,75,76). Our data demonstrate that the ultrasound-guided synovial tissue biopsy specimens obtained from patients with RA are sufficient for RNA-seq, distinguish differences between patients with RA and those with OA, and, importantly, set the framework for the stratification of patients with RA according to the most prominent disease pathway. We also report an optimized digestion protocol for synovial tissue obtained by ultrasound-guided biopsies and demonstrate the ability to sort viable hematopoietic cells...
by FACS. Further, we show that only small numbers of cells (as few as 10 cells) are sufficient for generation of libraries for quality RNA-seq analysis. With our initial cohort of 41 patients, we have been able to link the cell type–specific transcriptional signatures with patients’ treatment regimens and clinical information.

Currently, the standard of care for RA is to prescribe biologic therapy through a costly and time-consuming trial-and-error process. Therefore, the utility of a biomarker to identify how a patient will respond to a particular therapy cannot be overstated. While peripheral blood is attractive for identifying a potential biomarker due to its ease of attainability, this approach has not been fruitful. Early studies by Dr. Paul Tak and colleagues demonstrated the potential of obtaining synovial tissue as a means to determine a biomarker for responsiveness to therapy (31). In his seminal studies, he showed that a reduction in the number of synovial sublining macrophages correlates with a decrease in disease activity (i.e., the Disease Activity Score in 28 joints) (31). The abundance of synovial sublining macrophages is currently a leading candidate for a viable biomarker of therapeutic response in RA (25).

We posit that transcriptional signatures in macrophages regardless of location (sublining versus synovial lining) will predict responsiveness to specific non-biologic and/or biologic therapies. Our data suggest the existence of associations between the transcriptional signature of macrophages and treatment course (or patient compliance). However, the present study is limited in its ability to predict response to therapy because of the constraint of obtaining tissue at a single time point for each patient at different stages of disease. Future studies beyond the scope of the present one will entail collection of synovial biopsy specimens from a larger cohort longitudinally, prior to and following therapy. Therefore, this study serves as proof of the principle that transcriptional analysis of synovial macrophages using ultrasound-guided synovial biopsies may function to uncover novel pathways underlying disease pathogenesis or response to therapy. Currently, studies are also underway in the Accelerating Medicines Partnership which will take advantage of synovial biopsies for identification of molecular pathways (77).

In summary, this study is the first in the US to harness the potential of ultrasound-guided synovial biopsies as a method of obtaining synovial tissue from patients with RA. Based on the recent success of REASON using minimally invasive ultrasound-guided synovial biopsies, coupled with our ability to interrogate synovial tissue at multiple levels using cutting-edge technologies, we believe that future studies have the potential to provide critical information to rheumatologists in establishing precision medicine as a reality for our patients.

ACKNOWLEDGMENTS

In loving memory of Colleen Pope Vitu. We thank the patients who underwent synovial biopsy for this study and acknowledge technical assistance at each site. We thank Stephanie Ledbetter, MS, Laticia Woodruff, RN, and Keith Wanzek, BS at University of Alabama at Birmingham. We also thank Drs. Terrance Peabody, Ali Shilatifard, Hussain Bhikhapurwala, and Danette Ko for their assistance. Flow cytometry cell sorting was performed in the Northwestern University Lurie Cancer Center Flow Cytometry Core Facility (supported by National Cancer Institute [NCI] P30-CA060553) and on a BD FACSAria SORP system (purchased through the support of National Institutes of Health 1S10OD011996-01). Histology services were provided by the Northwestern University Mouse Histology and Phenotyping Laboratory (supported by NCI P30-CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center). RNA sequencing was performed in the Northwestern University Division of Rheumatology and Pulmonary and Critical Care sequencing facility.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Perlman had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

REFERENCES

38. Lazarou I, D’Agostino MA, Naredo E, Humby F, Filer A, Kelly SG. Ultrasound-guided synovial biopsy: a systematic review according to the OMERACT filter and recommendations for