Front Cover:
T. B. Marder, I. Plantanida et al.
A Quadrupolar Bis-Triarylborane Chromophore as a Fluorimetric and Chiroptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins
A Quadrupolar Bis-Triarylborane Chromophore as a Fluorimetric and Chiroptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins

One dye to detect them all: A tetra-cationic quadrupolar bis-triarylborane dye can bind with 10–100 nM affinity and efficiently distinguish between DNA/RNA and BSA by characteristic fluorescence emission points separated by $\Delta \nu = 3600 \text{ cm}^{-1}$, allowing the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein-like target as a dominant binding site of this dye in human cells. More information can be found in the Full Paper by T. B. Marder, I. Piantanida, et al. (DOI: 10.1002/chem.201903936).