Erratum: Effects of soil–structure cluster interactions on ground motions

An error has been identified in the presentation of the images for Figures 2–19 in Ge et al. [1]. The corrected figures are shown below:

FIGURE 2 Arrangement of sensors in the GC20 test (mm)

FIGURE 3 Model of GC20 Test (mm). The structures and pile foundations were made of micro-concrete and fine zinc-coated steel bar...
FIGURE 4 Comparison of Gd/Gmax−γd and D−γd curves of the tests with the fitted curves: (a) Gd/Gmax−γd curve and (b) D−γd curve

FIGURE 5 Cylindrical flexible container (mm)

FIGURE 6 Fourier spectra of measured point S5 and displacement time history of measured point D1 in the test SC20 (input PGA = 0.10 g): (a) Fourier spectra of S5 for the case SH2 and (b) displacement time history of D1 for the case EL2
FIGURE 7 Response spectrum for sensor S12: (a) acceleration response spectra and (b) velocity response spectra

FIGURE 8 Parametric analysis finite element models: (a) GC20, (b) N7, (c) N9, (d) N11 model, (e) N13 model, (f) N15, (g) A5, and (h) A9

FIGURE 9 Fourier spectra for sensors S2 and S3: (a) Case EL1, (b) Case EL3, (c) Case EL5, (d) Case EL7, (e) Case SH5, and (f) Case SH7
FIGURE 10 Fourier spectrum for sensors S6, S7, S8, and S12: (a) Case EL1, (b) Case EL3, (c) Case EL5, (d) Case EL7, (e) Case SH5, and (f) Case SH7

FIGURE 11 Peak acceleration: (a) structure amount for case SH3, (b) structure amount for case EL3, (c) structure spacing for case SH3, (d) structure spacing for case EL3, (e) asymmetric distribution for SH3, (f) asymmetric distribution for EL3, (g) mass block for case SH3, and (h) mass block for case EL3
FIGURE 12 Acceleration response spectra for soil of Models N9, N11, N15, GC20, and FD in the case EL3: (a) overview of response spectrum, (b) local amplification for N15, GC20, and FD, (c) local amplification for N9, N11, N15, and FD

FIGURE 13 Acceleration response spectra for structure of Models N9, N11, N13, N15, GC20, and SC20 in the case EL3: (a) overview of response spectrum, (b) local amplification for N9, N11, N15, GC20, and SC20, (c) local amplification for N9, N15, and GC20

FIGURE 14 Displacement response spectra for structure of Models N11, N15, and SC20 in the case EL3: (a) overview of response spectrum and (b) local amplification

FIGURE 15 Acceleration response spectra for soil of models D500, D800, D1000, and GC20 in the case EL3: (a) overview of response spectrum, (b) local amplification for D500 and GC20, (c) local amplification for D500, D800, and D1000
FIGURE 16 Acceleration response spectra for structure of Models D500, D800, D1000, and GC20 in the case EL3: (a) overview of response spectrum, (b) local amplification for D500, D800, D1000, and GC20, (c) local amplification for D500 and GC20, (d) local amplification for D800 and D1000

FIGURE 17 Response spectra for structure of in the case EL3: (a) acceleration response spectra for structure, (b) velocity response spectra for structure, (c) displacement response spectra for structure

FIGURE 18 Response spectra for soil Models S2, S5, S10, and GC20 in the case EL3: (a) acceleration response spectra for soil, (b) velocity response spectra for soil, (c) displacement response spectra for soil
FIGURE 19 Acceleration response spectra for soil of Models M40, M80, and GC20 in the case EL3: (a) overview of response spectrum for soil and (b) local amplification for soil

REFERENCE