Mepolizumab does not alter the blood basophil count in severe asthma

To the Editor:

Mepolizumab (anti-IL-5) depletes blood and airway eosinophils, and, clinically, allows down-titration of oral corticosteroid and a reduction in the frequency of eosinophil-dependent exacerbations. Basophils also express IL-5Rα, participate in T2-mediated inflammatory pathways and have been associated with exacerbation frequency. Whilst basophil progenitors are unlikely to depend on IL-5 for development, blood basophil counts measured in routine clinical laboratories suggest they decrease following mepolizumab treatment.

Our primary objective was to determine whether anti-IL-5 monoclonal antibody treatment reduces blood basophil levels as an additional potential efficacy mechanism. To achieve this, we measured blood basophils, eosinophils and other type 2 inflammatory cells, before and after 16 weeks of mepolizumab ("Nucala," GlaxoSmithKline) by flow cytometry. Patient eligibility criteria are in the online supplement and the study schedule in Figure S1.

Blood samples were obtained from 26 severe asthma subjects, attending a difficult asthma clinic at a single UK centre, at baseline and following a median (IQR) of 16 (16-17) weeks of mepolizumab, administered as a 100 mg subcutaneous injection every 4 weeks. In 2 cases, it was not possible to obtain post-treatment samples (n = 1, withdrew consent; n = 1, discontinued), totalling 24 (Figure S1). In addition, the change in cell concentration between baseline and follow-up showed a good correlation (r = 0.0014) and eosinophils (r² = 0.24, P = 0.0014) and eosinophils (r² = 0.75, P < 0.0001), but not basophils (r² = 0.06, P = 0.13 Figure S3). In addition, the change in cell concentration between baseline and follow-up showed a good correlation

Siddiqui, Cousins and Brightling are co-senior authors.

REFERENCES

DOI: 10.1111/all.13879
between the two analytical methods for eosinophils ($r^2 = 0.72$, $P < 0.0001, n = 38$) but not basophils ($r^2 = 0.02, P = 0.39, n = 38$).

As expected, following 16 weeks of mepolizumab, we observed a significant reduction in blood eosinophil concentration (flow cytometry [mean ± SD] −6442 ± 6852, ADVIA −20 688 ± 19 355 cells/100 μL, Figure 1A) and frequency (flow cytometry [mean ± SD] −1.2 ± 1.2% of total leukocytes, Figure S4A) compared with baseline levels for both methods. This decrease was not observed in our control group (mean ± SD 2475 ± 4148, 285 ± 6977 cells/100 μL and 0.70 ± 1.38%, respectively) (Figure 1A). Notably, the reduction in blood eosinophil levels following mepolizumab was related to baseline eosinophil levels ($r^2 = 0.69, P < 0.0001$, Figure S5).

In contrast to eosinophils, basophil concentration and frequency at baseline were similar to that following 16 weeks of mepolizumab, when measured by flow cytometry (pre vs post [mean ± SD] 2232 ± 1309 vs 1873 ± 1647 cells/100 μL, $P = 0.23$, Figure 1B and 0.40 ± 0.19 vs 0.37 ± 0.27% of total leukocytes, $P = 0.076$, Figure S4B). Surprisingly, measurements obtained on the ADVIA 2120i suggested a statistically significant reduction in the basophil concentration following 16 weeks of mepolizumab (pre vs post [mean ± SD] 5521 ± 2003 vs 3792 ± 3623 cells/100 μL, $P = 0.0009$, Figure 1B). The mean ± SD reduction in basophil concentration of −1667 ± 3988 cells/100 μL in asthma was significantly greater compared with the change observed in the control group (vs −571 ± 1222, $P = 0.011$, Mann-Whitney). In the healthy group, the concentration and frequency of basophils were similar when comparing baseline and follow-up samples, regardless of analytical method (Figures 1B and S4).
These data suggest that basophil concentration and frequency, alongside other T2 inflammatory cells (Figure S6), are likely to be IL-5/mepolizumab-independent in severe asthma. However, our real-world study was not sufficiently powered to detect small differences in relation to basophil concentration or frequency. A strength of our flow cytometric approach is that we have measured cell concentration as well as frequency, and also reported recently identified T2 cell subsets (eg, peTH2 cells). Our data suggest there were also no indirect effects of mepolizumab on type-2 polarised T cell or group 2 ILC concentration over this 16-week time frame as indicated by others.

Clinically, we observed a significant change in ACQ6 symptom score from a baseline of 2.9 ± 1.6 to 1.9 ± 1.3 at 16 weeks post-treatment, which is a reduction of −0.92 (97.73% CI of −2 to −0.16, Wilcoxon matched pairs, P = 0.0085), corresponding to an improvement in symptoms above the minimal clinically important difference (MCID) threshold of −0.5. Since baseline eosinophil concentration was associated with basophils ($r = 0.53, P = 0.0073$), cTH2 ($r = 0.59, P = 0.0023$), peTH2 ($r = 0.45, P = 0.026$) and TC2 ($r = 0.45, P = 0.026$) cells and total cells ($r = 0.2, P = 0.35$) or ILC2s ($r = 0.2, P = 0.35$), we examined their relationship to ACQ6 improvement (ΔACQ6). The baseline cellular parameters described above were not associated with ΔACQ6 (Figure 2, shown for eosinophils, cTH2 and peTH2 cells only). ΔACQ6 was also not associated with the Δ change in eosinophil ($r^2 = 0.04, P = 0.36$) or basophil ($r^2 = 0.09, P = 0.15$) levels post-treatment, limiting the utility of these measurements as symptom response biomarkers.

Of further interest was the effect of mepolizumab on eosinophil and basophil cell surface expression of the IL-3 receptor α (CD123), and their relationship to ΔACQ6. IL-3 is upregulated in the serum of poorly controlled asthmatic patients, and it can potentiate eosinophil chemotactic and degranulation responses. Recently, mepolizumab treatment, in the context of allergen challenge, was associated with reduced levels of IL-3Rα mRNA and protein on circulating blood but not lung eosinophils.

Consistent with Kelly et al, we observed a decrease in eosinophil IL-3Rα cell surface expression in response to mepolizumab in asthma (pre [mean ± SD] 415 ± 306 vs post 204 ± 192 GMFI, $P < 0.0001$, n = 21) and not in our healthy control group (baseline [mean ± SD] 587 ± 626 vs post 558 ± 535 GMFI, $P = 0.32$, n = 15) (example in Figure S2 and cumulative in S7). This represents a % decrease of −54 ± 25% in asthma compared with +9 ± 55% in the healthy group (mean ± SD, $P < 0.0001$, Mann-Whitney test). We also noted that eosinophil expression of CRTH2 (CD294) was increased following mepolizumab (Figure S7); however, there was no relationship between the reduction in eosinophil IL-3Rα expression and CRTH2 expression. Importantly, there was no relationship between changes in eosinophil IL-3Rα or CRTH2 expression with ΔACQ6 in these patients. Furthermore, there were no mepolizumab-dependent effects on eosinophil/basophil Siglec-8, CD69 or IL-5Rα expression (not shown), consistent with others or basophil IL-3Rα (Figure S7), and thus, these parameters were not examined for a relationship with ΔACQ6.

In summary, our flow cytometric data do not support a direct inhibitory effect of mepolizumab on basophil levels, and therefore, clinical benefit is likely to be independent of basophils. Our data suggest that the specificity and sensitivity of basophil detection on routine clinical analysers should be validated prior to reporting/interpreting basophil data in the context of an intervention. Our data do support others that mepolizumab reduces eosinophil, but not basophil, IL-3Rα expression and, importantly, extends the applicability of this phenomenon to the “real-world” scenario. However, neither changes in eosinophil levels nor changes in IL-3Rα expression were associated with clinical efficacy determined by change in asthma control in this study, and thus, biological correlates of response to treatment require further study.

FUNDING INFORMATION

This research was funded by Leicester Drug Discovery and Diagnostics (LD) with financial contributions from MRC grant MC_PC_15045 and supported by the NIHR Leicester Biomedical Research Centre.

Adam Kelvin Alec Wright1,2
Sarah Diver1,2
Jamie McCarthy1
Andrew Marvin3
Marcia Soares1,2
Tracy Thornton2
Michelle Bourne2
Michelle Craner2,4
Helen Evans3
Sarah Edwards2
Sarah Glover2
Liesl Carr1,2
Sarah Parker2
Salman Siddiqui1,2,4
David Cousins1,2
Chris Brightling1,2,4

1Department of Respiratory Sciences, University of Leicester, Leicester, UK
2National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
3Pathology Services, University Hospitals of Leicester NHS Trust, Leicester, UK
4Respiratory Medicine, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK

Correspondence

Adam Wright, Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, LE3 9QP, UK.

Email: adam.wright@le.ac.uk
Circulating miRNAs as diagnostic tool for discrimination of respiratory disease: Asthma, asthma-chronic obstructive pulmonary disease (COPD) overlap and COPD

To the Editor,

Asthma is a respiratory condition characterized by reversible airflow obstruction and airway inflammation usually provoked by eosinophils, which is usually associated with atopy and early onset. Although asthma normally presents itself alone, it does not protect against chronic obstructive pulmonary disease (COPD), which is another lung pathology that differs from asthma in the non-reversible airflow obstruction, adulthood onset and the triggering by noxious substances. This condition of having concomitant diagnosis of asthma and COPD has been identified as asthma-COPD overlap (ACO), and it is characterized by the features of both diseases.

Nowadays, only spirometry and clinical manifestations can differentiate between both pathologies. Their differentiation is important because their treatment is different. The use of inhaled corticosteroids, the cornerstone of asthma management, could be harmful in COPD, since it has been associated with the occurrence of pneumonia. For this reason, they are not indicated in COPD, unless some clinical characteristics are present, the presence of high blood eosinophil counts being the most important, which defines ACO. Thus, the use of disease biomarkers might help the clinical practice. MicroRNAs (miRNAs) are small noncoding RNAs associated with disease mechanisms and have been described as good biomarkers. We have previously described that differential miRNAs expression obtained from eosinophils of asthmatics compared with healthy individuals was able to cluster asthmatics and healthy subjects. We hypothesized that some of these miRNAs could be specific to asthma, and they may differentiate asthma from other respiratory diseases. Therefore, the aim of the study was to compare these miRNAs between asthmatics, COPD and ACO and to analyse whether they could be used as asthma biomarkers.

Abbreviations: ACO, asthma-COPD overlap; AMPK, AMP-activated protein kinase; AUC, area under the curve; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in the first second; Fox, forkhead box; FVC, forced vital capacity; IL, interleukin; MAPK, mitogen-activated protein kinases; PI3K-AKT, phosphoinositide-3-kinase–protein kinase B; RNA, ribonucleic acid; ROC, receiver operating characteristic; sRAGE, soluble form of receptor for advanced glycation end products; TGF-β, transforming growth factor beta; YKL-40, Chitinase 3-like 1.

Rodrigo-Muñoz and Rial equally contributed to this publication.